L(s) = 1 | + (1.70 + 1.70i)2-s + (−1 + 0.414i)3-s + 3.82i·4-s + (−0.292 − 0.707i)5-s + (−2.41 − i)6-s + (−1 + 2.41i)7-s + (−3.12 + 3.12i)8-s + (−1.29 + 1.29i)9-s + (0.707 − 1.70i)10-s + (2.41 + i)11-s + (−1.58 − 3.82i)12-s − 1.41i·13-s + (−5.82 + 2.41i)14-s + (0.585 + 0.585i)15-s − 2.99·16-s + ⋯ |
L(s) = 1 | + (1.20 + 1.20i)2-s + (−0.577 + 0.239i)3-s + 1.91i·4-s + (−0.130 − 0.316i)5-s + (−0.985 − 0.408i)6-s + (−0.377 + 0.912i)7-s + (−1.10 + 1.10i)8-s + (−0.430 + 0.430i)9-s + (0.223 − 0.539i)10-s + (0.727 + 0.301i)11-s + (−0.457 − 1.10i)12-s − 0.392i·13-s + (−1.55 + 0.645i)14-s + (0.151 + 0.151i)15-s − 0.749·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.525093 + 1.73756i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.525093 + 1.73756i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 + (-1.70 - 1.70i)T + 2iT^{2} \) |
| 3 | \( 1 + (1 - 0.414i)T + (2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (0.292 + 0.707i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (1 - 2.41i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-2.41 - i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 1.41iT - 13T^{2} \) |
| 19 | \( 1 + (0.585 + 0.585i)T + 19iT^{2} \) |
| 23 | \( 1 + (-4.41 - 1.82i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (0.121 + 0.292i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-7.24 + 3i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (8.53 - 3.53i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-0.464 + 1.12i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-0.585 + 0.585i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.17iT - 47T^{2} \) |
| 53 | \( 1 + (-1 - i)T + 53iT^{2} \) |
| 59 | \( 1 + (4.24 - 4.24i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.46 - 3.53i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 1.17T + 67T^{2} \) |
| 71 | \( 1 + (-5 + 2.07i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (4.94 + 11.9i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (4.41 + 1.82i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (8.24 + 8.24i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.58iT - 89T^{2} \) |
| 97 | \( 1 + (-3.94 - 9.53i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.22249994635498271877099266316, −11.80756499389939265770816678795, −10.43560955136684727730861435460, −9.009359745549070946999504568497, −8.161762985081035208484906279379, −6.90504821037325140677386472411, −6.04541997972059184293274876409, −5.24748588045161929235453160516, −4.42807080742808074278823104632, −2.96098701911479966556842595915,
1.11634992736315779072119160441, 3.02379399210395561506730242619, 3.89994707217805160076139320815, 5.05760924249245720573450161156, 6.27782923678038741122707353322, 6.99980190141439052744357572349, 8.858261682857620519150896046242, 10.06179350234110939808724168027, 10.93929961447991861124095902787, 11.45566024978323192796655988157