Properties

Label 289.2.d.b.155.1
Level $289$
Weight $2$
Character 289.155
Analytic conductor $2.308$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,2,Mod(110,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.110"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.d (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 155.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 289.155
Dual form 289.2.d.b.179.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70711 + 1.70711i) q^{2} +(-1.00000 + 0.414214i) q^{3} +3.82843i q^{4} +(-0.292893 - 0.707107i) q^{5} +(-2.41421 - 1.00000i) q^{6} +(-1.00000 + 2.41421i) q^{7} +(-3.12132 + 3.12132i) q^{8} +(-1.29289 + 1.29289i) q^{9} +(0.707107 - 1.70711i) q^{10} +(2.41421 + 1.00000i) q^{11} +(-1.58579 - 3.82843i) q^{12} -1.41421i q^{13} +(-5.82843 + 2.41421i) q^{14} +(0.585786 + 0.585786i) q^{15} -3.00000 q^{16} -4.41421 q^{18} +(-0.585786 - 0.585786i) q^{19} +(2.70711 - 1.12132i) q^{20} -2.82843i q^{21} +(2.41421 + 5.82843i) q^{22} +(4.41421 + 1.82843i) q^{23} +(1.82843 - 4.41421i) q^{24} +(3.12132 - 3.12132i) q^{25} +(2.41421 - 2.41421i) q^{26} +(2.00000 - 4.82843i) q^{27} +(-9.24264 - 3.82843i) q^{28} +(-0.121320 - 0.292893i) q^{29} +2.00000i q^{30} +(7.24264 - 3.00000i) q^{31} +(1.12132 + 1.12132i) q^{32} -2.82843 q^{33} +2.00000 q^{35} +(-4.94975 - 4.94975i) q^{36} +(-8.53553 + 3.53553i) q^{37} -2.00000i q^{38} +(0.585786 + 1.41421i) q^{39} +(3.12132 + 1.29289i) q^{40} +(0.464466 - 1.12132i) q^{41} +(4.82843 - 4.82843i) q^{42} +(0.585786 - 0.585786i) q^{43} +(-3.82843 + 9.24264i) q^{44} +(1.29289 + 0.535534i) q^{45} +(4.41421 + 10.6569i) q^{46} -5.17157i q^{47} +(3.00000 - 1.24264i) q^{48} +(0.121320 + 0.121320i) q^{49} +10.6569 q^{50} +5.41421 q^{52} +(1.00000 + 1.00000i) q^{53} +(11.6569 - 4.82843i) q^{54} -2.00000i q^{55} +(-4.41421 - 10.6569i) q^{56} +(0.828427 + 0.343146i) q^{57} +(0.292893 - 0.707107i) q^{58} +(-4.24264 + 4.24264i) q^{59} +(-2.24264 + 2.24264i) q^{60} +(-1.46447 + 3.53553i) q^{61} +(17.4853 + 7.24264i) q^{62} +(-1.82843 - 4.41421i) q^{63} +9.82843i q^{64} +(-1.00000 + 0.414214i) q^{65} +(-4.82843 - 4.82843i) q^{66} +1.17157 q^{67} -5.17157 q^{69} +(3.41421 + 3.41421i) q^{70} +(5.00000 - 2.07107i) q^{71} -8.07107i q^{72} +(-4.94975 - 11.9497i) q^{73} +(-20.6066 - 8.53553i) q^{74} +(-1.82843 + 4.41421i) q^{75} +(2.24264 - 2.24264i) q^{76} +(-4.82843 + 4.82843i) q^{77} +(-1.41421 + 3.41421i) q^{78} +(-4.41421 - 1.82843i) q^{79} +(0.878680 + 2.12132i) q^{80} +0.171573i q^{81} +(2.70711 - 1.12132i) q^{82} +(-8.24264 - 8.24264i) q^{83} +10.8284 q^{84} +2.00000 q^{86} +(0.242641 + 0.242641i) q^{87} +(-10.6569 + 4.41421i) q^{88} +6.58579i q^{89} +(1.29289 + 3.12132i) q^{90} +(3.41421 + 1.41421i) q^{91} +(-7.00000 + 16.8995i) q^{92} +(-6.00000 + 6.00000i) q^{93} +(8.82843 - 8.82843i) q^{94} +(-0.242641 + 0.585786i) q^{95} +(-1.58579 - 0.656854i) q^{96} +(3.94975 + 9.53553i) q^{97} +0.414214i q^{98} +(-4.41421 + 1.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} - 4 q^{5} - 4 q^{6} - 4 q^{7} - 4 q^{8} - 8 q^{9} + 4 q^{11} - 12 q^{12} - 12 q^{14} + 8 q^{15} - 12 q^{16} - 12 q^{18} - 8 q^{19} + 8 q^{20} + 4 q^{22} + 12 q^{23} - 4 q^{24} + 4 q^{25}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.70711 + 1.70711i 1.20711 + 1.20711i 0.971960 + 0.235147i \(0.0755571\pi\)
0.235147 + 0.971960i \(0.424443\pi\)
\(3\) −1.00000 + 0.414214i −0.577350 + 0.239146i −0.652198 0.758049i \(-0.726153\pi\)
0.0748477 + 0.997195i \(0.476153\pi\)
\(4\) 3.82843i 1.91421i
\(5\) −0.292893 0.707107i −0.130986 0.316228i 0.844756 0.535151i \(-0.179745\pi\)
−0.975742 + 0.218924i \(0.929745\pi\)
\(6\) −2.41421 1.00000i −0.985599 0.408248i
\(7\) −1.00000 + 2.41421i −0.377964 + 0.912487i 0.614383 + 0.789008i \(0.289405\pi\)
−0.992347 + 0.123479i \(0.960595\pi\)
\(8\) −3.12132 + 3.12132i −1.10355 + 1.10355i
\(9\) −1.29289 + 1.29289i −0.430964 + 0.430964i
\(10\) 0.707107 1.70711i 0.223607 0.539835i
\(11\) 2.41421 + 1.00000i 0.727913 + 0.301511i 0.715694 0.698414i \(-0.246111\pi\)
0.0122188 + 0.999925i \(0.496111\pi\)
\(12\) −1.58579 3.82843i −0.457777 1.10517i
\(13\) 1.41421i 0.392232i −0.980581 0.196116i \(-0.937167\pi\)
0.980581 0.196116i \(-0.0628330\pi\)
\(14\) −5.82843 + 2.41421i −1.55771 + 0.645226i
\(15\) 0.585786 + 0.585786i 0.151249 + 0.151249i
\(16\) −3.00000 −0.750000
\(17\) 0 0
\(18\) −4.41421 −1.04044
\(19\) −0.585786 0.585786i −0.134389 0.134389i 0.636713 0.771101i \(-0.280294\pi\)
−0.771101 + 0.636713i \(0.780294\pi\)
\(20\) 2.70711 1.12132i 0.605327 0.250735i
\(21\) 2.82843i 0.617213i
\(22\) 2.41421 + 5.82843i 0.514712 + 1.24262i
\(23\) 4.41421 + 1.82843i 0.920427 + 0.381253i 0.792039 0.610471i \(-0.209020\pi\)
0.128388 + 0.991724i \(0.459020\pi\)
\(24\) 1.82843 4.41421i 0.373226 0.901048i
\(25\) 3.12132 3.12132i 0.624264 0.624264i
\(26\) 2.41421 2.41421i 0.473466 0.473466i
\(27\) 2.00000 4.82843i 0.384900 0.929231i
\(28\) −9.24264 3.82843i −1.74669 0.723505i
\(29\) −0.121320 0.292893i −0.0225286 0.0543889i 0.912215 0.409712i \(-0.134371\pi\)
−0.934744 + 0.355323i \(0.884371\pi\)
\(30\) 2.00000i 0.365148i
\(31\) 7.24264 3.00000i 1.30082 0.538816i 0.378625 0.925550i \(-0.376397\pi\)
0.922191 + 0.386734i \(0.126397\pi\)
\(32\) 1.12132 + 1.12132i 0.198223 + 0.198223i
\(33\) −2.82843 −0.492366
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) −4.94975 4.94975i −0.824958 0.824958i
\(37\) −8.53553 + 3.53553i −1.40323 + 0.581238i −0.950589 0.310453i \(-0.899519\pi\)
−0.452644 + 0.891691i \(0.649519\pi\)
\(38\) 2.00000i 0.324443i
\(39\) 0.585786 + 1.41421i 0.0938009 + 0.226455i
\(40\) 3.12132 + 1.29289i 0.493524 + 0.204424i
\(41\) 0.464466 1.12132i 0.0725374 0.175121i −0.883452 0.468521i \(-0.844787\pi\)
0.955990 + 0.293400i \(0.0947869\pi\)
\(42\) 4.82843 4.82843i 0.745042 0.745042i
\(43\) 0.585786 0.585786i 0.0893316 0.0893316i −0.661029 0.750360i \(-0.729880\pi\)
0.750360 + 0.661029i \(0.229880\pi\)
\(44\) −3.82843 + 9.24264i −0.577157 + 1.39338i
\(45\) 1.29289 + 0.535534i 0.192733 + 0.0798327i
\(46\) 4.41421 + 10.6569i 0.650840 + 1.57127i
\(47\) 5.17157i 0.754351i −0.926142 0.377176i \(-0.876895\pi\)
0.926142 0.377176i \(-0.123105\pi\)
\(48\) 3.00000 1.24264i 0.433013 0.179360i
\(49\) 0.121320 + 0.121320i 0.0173315 + 0.0173315i
\(50\) 10.6569 1.50711
\(51\) 0 0
\(52\) 5.41421 0.750816
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) 11.6569 4.82843i 1.58630 0.657066i
\(55\) 2.00000i 0.269680i
\(56\) −4.41421 10.6569i −0.589874 1.42408i
\(57\) 0.828427 + 0.343146i 0.109728 + 0.0454508i
\(58\) 0.292893 0.707107i 0.0384588 0.0928477i
\(59\) −4.24264 + 4.24264i −0.552345 + 0.552345i −0.927117 0.374772i \(-0.877721\pi\)
0.374772 + 0.927117i \(0.377721\pi\)
\(60\) −2.24264 + 2.24264i −0.289524 + 0.289524i
\(61\) −1.46447 + 3.53553i −0.187506 + 0.452679i −0.989478 0.144682i \(-0.953784\pi\)
0.801973 + 0.597361i \(0.203784\pi\)
\(62\) 17.4853 + 7.24264i 2.22063 + 0.919816i
\(63\) −1.82843 4.41421i −0.230360 0.556139i
\(64\) 9.82843i 1.22855i
\(65\) −1.00000 + 0.414214i −0.124035 + 0.0513769i
\(66\) −4.82843 4.82843i −0.594338 0.594338i
\(67\) 1.17157 0.143130 0.0715652 0.997436i \(-0.477201\pi\)
0.0715652 + 0.997436i \(0.477201\pi\)
\(68\) 0 0
\(69\) −5.17157 −0.622584
\(70\) 3.41421 + 3.41421i 0.408077 + 0.408077i
\(71\) 5.00000 2.07107i 0.593391 0.245791i −0.0657178 0.997838i \(-0.520934\pi\)
0.659109 + 0.752048i \(0.270934\pi\)
\(72\) 8.07107i 0.951184i
\(73\) −4.94975 11.9497i −0.579324 1.39861i −0.893421 0.449221i \(-0.851702\pi\)
0.314097 0.949391i \(-0.398298\pi\)
\(74\) −20.6066 8.53553i −2.39547 0.992236i
\(75\) −1.82843 + 4.41421i −0.211129 + 0.509709i
\(76\) 2.24264 2.24264i 0.257249 0.257249i
\(77\) −4.82843 + 4.82843i −0.550250 + 0.550250i
\(78\) −1.41421 + 3.41421i −0.160128 + 0.386584i
\(79\) −4.41421 1.82843i −0.496638 0.205714i 0.120283 0.992740i \(-0.461620\pi\)
−0.616920 + 0.787026i \(0.711620\pi\)
\(80\) 0.878680 + 2.12132i 0.0982394 + 0.237171i
\(81\) 0.171573i 0.0190637i
\(82\) 2.70711 1.12132i 0.298950 0.123829i
\(83\) −8.24264 8.24264i −0.904747 0.904747i 0.0910949 0.995842i \(-0.470963\pi\)
−0.995842 + 0.0910949i \(0.970963\pi\)
\(84\) 10.8284 1.18148
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 0.242641 + 0.242641i 0.0260138 + 0.0260138i
\(88\) −10.6569 + 4.41421i −1.13602 + 0.470557i
\(89\) 6.58579i 0.698092i 0.937106 + 0.349046i \(0.113494\pi\)
−0.937106 + 0.349046i \(0.886506\pi\)
\(90\) 1.29289 + 3.12132i 0.136283 + 0.329016i
\(91\) 3.41421 + 1.41421i 0.357907 + 0.148250i
\(92\) −7.00000 + 16.8995i −0.729800 + 1.76189i
\(93\) −6.00000 + 6.00000i −0.622171 + 0.622171i
\(94\) 8.82843 8.82843i 0.910583 0.910583i
\(95\) −0.242641 + 0.585786i −0.0248944 + 0.0601004i
\(96\) −1.58579 0.656854i −0.161849 0.0670399i
\(97\) 3.94975 + 9.53553i 0.401036 + 0.968187i 0.987415 + 0.158150i \(0.0505529\pi\)
−0.586379 + 0.810037i \(0.699447\pi\)
\(98\) 0.414214i 0.0418419i
\(99\) −4.41421 + 1.82843i −0.443645 + 0.183764i
\(100\) 11.9497 + 11.9497i 1.19497 + 1.19497i
\(101\) −10.5858 −1.05333 −0.526663 0.850074i \(-0.676557\pi\)
−0.526663 + 0.850074i \(0.676557\pi\)
\(102\) 0 0
\(103\) 12.4853 1.23021 0.615106 0.788445i \(-0.289113\pi\)
0.615106 + 0.788445i \(0.289113\pi\)
\(104\) 4.41421 + 4.41421i 0.432849 + 0.432849i
\(105\) −2.00000 + 0.828427i −0.195180 + 0.0808462i
\(106\) 3.41421i 0.331618i
\(107\) 0.171573 + 0.414214i 0.0165866 + 0.0400435i 0.931956 0.362572i \(-0.118101\pi\)
−0.915369 + 0.402615i \(0.868101\pi\)
\(108\) 18.4853 + 7.65685i 1.77875 + 0.736781i
\(109\) 5.94975 14.3640i 0.569882 1.37582i −0.331772 0.943360i \(-0.607646\pi\)
0.901654 0.432458i \(-0.142354\pi\)
\(110\) 3.41421 3.41421i 0.325532 0.325532i
\(111\) 7.07107 7.07107i 0.671156 0.671156i
\(112\) 3.00000 7.24264i 0.283473 0.684365i
\(113\) −12.1924 5.05025i −1.14696 0.475088i −0.273449 0.961886i \(-0.588165\pi\)
−0.873514 + 0.486799i \(0.838165\pi\)
\(114\) 0.828427 + 2.00000i 0.0775893 + 0.187317i
\(115\) 3.65685i 0.341003i
\(116\) 1.12132 0.464466i 0.104112 0.0431246i
\(117\) 1.82843 + 1.82843i 0.169038 + 0.169038i
\(118\) −14.4853 −1.33348
\(119\) 0 0
\(120\) −3.65685 −0.333824
\(121\) −2.94975 2.94975i −0.268159 0.268159i
\(122\) −8.53553 + 3.53553i −0.772771 + 0.320092i
\(123\) 1.31371i 0.118453i
\(124\) 11.4853 + 27.7279i 1.03141 + 2.49004i
\(125\) −6.65685 2.75736i −0.595407 0.246626i
\(126\) 4.41421 10.6569i 0.393249 0.949388i
\(127\) 3.75736 3.75736i 0.333412 0.333412i −0.520469 0.853881i \(-0.674243\pi\)
0.853881 + 0.520469i \(0.174243\pi\)
\(128\) −14.5355 + 14.5355i −1.28477 + 1.28477i
\(129\) −0.343146 + 0.828427i −0.0302123 + 0.0729389i
\(130\) −2.41421 1.00000i −0.211741 0.0877058i
\(131\) −5.82843 14.0711i −0.509232 1.22939i −0.944326 0.329010i \(-0.893285\pi\)
0.435094 0.900385i \(-0.356715\pi\)
\(132\) 10.8284i 0.942494i
\(133\) 2.00000 0.828427i 0.173422 0.0718337i
\(134\) 2.00000 + 2.00000i 0.172774 + 0.172774i
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) −16.7279 −1.42916 −0.714581 0.699552i \(-0.753383\pi\)
−0.714581 + 0.699552i \(0.753383\pi\)
\(138\) −8.82843 8.82843i −0.751526 0.751526i
\(139\) 19.7279 8.17157i 1.67330 0.693104i 0.674328 0.738432i \(-0.264433\pi\)
0.998972 + 0.0453279i \(0.0144333\pi\)
\(140\) 7.65685i 0.647122i
\(141\) 2.14214 + 5.17157i 0.180400 + 0.435525i
\(142\) 12.0711 + 5.00000i 1.01298 + 0.419591i
\(143\) 1.41421 3.41421i 0.118262 0.285511i
\(144\) 3.87868 3.87868i 0.323223 0.323223i
\(145\) −0.171573 + 0.171573i −0.0142484 + 0.0142484i
\(146\) 11.9497 28.8492i 0.988968 2.38758i
\(147\) −0.171573 0.0710678i −0.0141511 0.00586157i
\(148\) −13.5355 32.6777i −1.11261 2.68609i
\(149\) 16.9706i 1.39028i 0.718873 + 0.695141i \(0.244658\pi\)
−0.718873 + 0.695141i \(0.755342\pi\)
\(150\) −10.6569 + 4.41421i −0.870129 + 0.360419i
\(151\) −5.07107 5.07107i −0.412678 0.412678i 0.469993 0.882670i \(-0.344257\pi\)
−0.882670 + 0.469993i \(0.844257\pi\)
\(152\) 3.65685 0.296610
\(153\) 0 0
\(154\) −16.4853 −1.32842
\(155\) −4.24264 4.24264i −0.340777 0.340777i
\(156\) −5.41421 + 2.24264i −0.433484 + 0.179555i
\(157\) 9.65685i 0.770701i −0.922770 0.385350i \(-0.874081\pi\)
0.922770 0.385350i \(-0.125919\pi\)
\(158\) −4.41421 10.6569i −0.351176 0.847814i
\(159\) −1.41421 0.585786i −0.112154 0.0464559i
\(160\) 0.464466 1.12132i 0.0367193 0.0886482i
\(161\) −8.82843 + 8.82843i −0.695778 + 0.695778i
\(162\) −0.292893 + 0.292893i −0.0230119 + 0.0230119i
\(163\) −3.24264 + 7.82843i −0.253983 + 0.613170i −0.998518 0.0544134i \(-0.982671\pi\)
0.744535 + 0.667583i \(0.232671\pi\)
\(164\) 4.29289 + 1.77817i 0.335219 + 0.138852i
\(165\) 0.828427 + 2.00000i 0.0644930 + 0.155700i
\(166\) 28.1421i 2.18425i
\(167\) −1.82843 + 0.757359i −0.141488 + 0.0586062i −0.452304 0.891864i \(-0.649398\pi\)
0.310816 + 0.950470i \(0.399398\pi\)
\(168\) 8.82843 + 8.82843i 0.681128 + 0.681128i
\(169\) 11.0000 0.846154
\(170\) 0 0
\(171\) 1.51472 0.115833
\(172\) 2.24264 + 2.24264i 0.171000 + 0.171000i
\(173\) −2.70711 + 1.12132i −0.205818 + 0.0852524i −0.483211 0.875504i \(-0.660530\pi\)
0.277393 + 0.960756i \(0.410530\pi\)
\(174\) 0.828427i 0.0628029i
\(175\) 4.41421 + 10.6569i 0.333683 + 0.805582i
\(176\) −7.24264 3.00000i −0.545935 0.226134i
\(177\) 2.48528 6.00000i 0.186805 0.450988i
\(178\) −11.2426 + 11.2426i −0.842672 + 0.842672i
\(179\) 4.24264 4.24264i 0.317110 0.317110i −0.530546 0.847656i \(-0.678013\pi\)
0.847656 + 0.530546i \(0.178013\pi\)
\(180\) −2.05025 + 4.94975i −0.152817 + 0.368932i
\(181\) 10.7782 + 4.46447i 0.801135 + 0.331841i 0.745411 0.666605i \(-0.232253\pi\)
0.0557243 + 0.998446i \(0.482253\pi\)
\(182\) 3.41421 + 8.24264i 0.253078 + 0.610985i
\(183\) 4.14214i 0.306195i
\(184\) −19.4853 + 8.07107i −1.43647 + 0.595007i
\(185\) 5.00000 + 5.00000i 0.367607 + 0.367607i
\(186\) −20.4853 −1.50205
\(187\) 0 0
\(188\) 19.7990 1.44399
\(189\) 9.65685 + 9.65685i 0.702433 + 0.702433i
\(190\) −1.41421 + 0.585786i −0.102598 + 0.0424974i
\(191\) 20.0000i 1.44715i 0.690246 + 0.723575i \(0.257502\pi\)
−0.690246 + 0.723575i \(0.742498\pi\)
\(192\) −4.07107 9.82843i −0.293804 0.709306i
\(193\) −2.12132 0.878680i −0.152696 0.0632487i 0.305027 0.952344i \(-0.401335\pi\)
−0.457722 + 0.889095i \(0.651335\pi\)
\(194\) −9.53553 + 23.0208i −0.684611 + 1.65280i
\(195\) 0.828427 0.828427i 0.0593249 0.0593249i
\(196\) −0.464466 + 0.464466i −0.0331761 + 0.0331761i
\(197\) −1.77817 + 4.29289i −0.126690 + 0.305856i −0.974480 0.224476i \(-0.927933\pi\)
0.847790 + 0.530332i \(0.177933\pi\)
\(198\) −10.6569 4.41421i −0.757350 0.313704i
\(199\) 4.41421 + 10.6569i 0.312915 + 0.755444i 0.999594 + 0.0284836i \(0.00906783\pi\)
−0.686679 + 0.726961i \(0.740932\pi\)
\(200\) 19.4853i 1.37782i
\(201\) −1.17157 + 0.485281i −0.0826364 + 0.0342291i
\(202\) −18.0711 18.0711i −1.27148 1.27148i
\(203\) 0.828427 0.0581442
\(204\) 0 0
\(205\) −0.928932 −0.0648794
\(206\) 21.3137 + 21.3137i 1.48500 + 1.48500i
\(207\) −8.07107 + 3.34315i −0.560978 + 0.232365i
\(208\) 4.24264i 0.294174i
\(209\) −0.828427 2.00000i −0.0573035 0.138343i
\(210\) −4.82843 2.00000i −0.333193 0.138013i
\(211\) −8.17157 + 19.7279i −0.562554 + 1.35813i 0.345163 + 0.938543i \(0.387824\pi\)
−0.907717 + 0.419583i \(0.862176\pi\)
\(212\) −3.82843 + 3.82843i −0.262937 + 0.262937i
\(213\) −4.14214 + 4.14214i −0.283814 + 0.283814i
\(214\) −0.414214 + 1.00000i −0.0283151 + 0.0683586i
\(215\) −0.585786 0.242641i −0.0399503 0.0165480i
\(216\) 8.82843 + 21.3137i 0.600698 + 1.45021i
\(217\) 20.4853i 1.39063i
\(218\) 34.6777 14.3640i 2.34867 0.972850i
\(219\) 9.89949 + 9.89949i 0.668946 + 0.668946i
\(220\) 7.65685 0.516225
\(221\) 0 0
\(222\) 24.1421 1.62031
\(223\) −3.41421 3.41421i −0.228633 0.228633i 0.583489 0.812121i \(-0.301687\pi\)
−0.812121 + 0.583489i \(0.801687\pi\)
\(224\) −3.82843 + 1.58579i −0.255798 + 0.105955i
\(225\) 8.07107i 0.538071i
\(226\) −12.1924 29.4350i −0.811026 1.95799i
\(227\) −16.0711 6.65685i −1.06667 0.441831i −0.220858 0.975306i \(-0.570886\pi\)
−0.845816 + 0.533475i \(0.820886\pi\)
\(228\) −1.31371 + 3.17157i −0.0870025 + 0.210043i
\(229\) 12.1421 12.1421i 0.802375 0.802375i −0.181091 0.983466i \(-0.557963\pi\)
0.983466 + 0.181091i \(0.0579630\pi\)
\(230\) 6.24264 6.24264i 0.411628 0.411628i
\(231\) 2.82843 6.82843i 0.186097 0.449278i
\(232\) 1.29289 + 0.535534i 0.0848826 + 0.0351595i
\(233\) 3.36396 + 8.12132i 0.220380 + 0.532045i 0.994942 0.100453i \(-0.0320293\pi\)
−0.774561 + 0.632499i \(0.782029\pi\)
\(234\) 6.24264i 0.408094i
\(235\) −3.65685 + 1.51472i −0.238547 + 0.0988093i
\(236\) −16.2426 16.2426i −1.05731 1.05731i
\(237\) 5.17157 0.335930
\(238\) 0 0
\(239\) 14.8284 0.959171 0.479586 0.877495i \(-0.340787\pi\)
0.479586 + 0.877495i \(0.340787\pi\)
\(240\) −1.75736 1.75736i −0.113437 0.113437i
\(241\) 3.29289 1.36396i 0.212114 0.0878605i −0.274097 0.961702i \(-0.588379\pi\)
0.486211 + 0.873842i \(0.338379\pi\)
\(242\) 10.0711i 0.647393i
\(243\) 5.92893 + 14.3137i 0.380341 + 0.918225i
\(244\) −13.5355 5.60660i −0.866524 0.358926i
\(245\) 0.0502525 0.121320i 0.00321052 0.00775087i
\(246\) −2.24264 + 2.24264i −0.142986 + 0.142986i
\(247\) −0.828427 + 0.828427i −0.0527116 + 0.0527116i
\(248\) −13.2426 + 31.9706i −0.840909 + 2.03013i
\(249\) 11.6569 + 4.82843i 0.738723 + 0.305989i
\(250\) −6.65685 16.0711i −0.421016 1.01642i
\(251\) 20.4853i 1.29302i −0.762906 0.646510i \(-0.776228\pi\)
0.762906 0.646510i \(-0.223772\pi\)
\(252\) 16.8995 7.00000i 1.06457 0.440959i
\(253\) 8.82843 + 8.82843i 0.555038 + 0.555038i
\(254\) 12.8284 0.804927
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 4.34315 + 4.34315i 0.270918 + 0.270918i 0.829470 0.558552i \(-0.188643\pi\)
−0.558552 + 0.829470i \(0.688643\pi\)
\(258\) −2.00000 + 0.828427i −0.124515 + 0.0515756i
\(259\) 24.1421i 1.50012i
\(260\) −1.58579 3.82843i −0.0983463 0.237429i
\(261\) 0.535534 + 0.221825i 0.0331487 + 0.0137306i
\(262\) 14.0711 33.9706i 0.869313 2.09871i
\(263\) 7.41421 7.41421i 0.457180 0.457180i −0.440549 0.897729i \(-0.645216\pi\)
0.897729 + 0.440549i \(0.145216\pi\)
\(264\) 8.82843 8.82843i 0.543352 0.543352i
\(265\) 0.414214 1.00000i 0.0254449 0.0614295i
\(266\) 4.82843 + 2.00000i 0.296050 + 0.122628i
\(267\) −2.72792 6.58579i −0.166946 0.403044i
\(268\) 4.48528i 0.273982i
\(269\) −24.4350 + 10.1213i −1.48983 + 0.617108i −0.971280 0.237939i \(-0.923528\pi\)
−0.518550 + 0.855047i \(0.673528\pi\)
\(270\) −6.82843 6.82843i −0.415565 0.415565i
\(271\) 22.1421 1.34504 0.672519 0.740079i \(-0.265212\pi\)
0.672519 + 0.740079i \(0.265212\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) −28.5563 28.5563i −1.72515 1.72515i
\(275\) 10.6569 4.41421i 0.642632 0.266187i
\(276\) 19.7990i 1.19176i
\(277\) −7.63604 18.4350i −0.458805 1.10765i −0.968882 0.247525i \(-0.920383\pi\)
0.510077 0.860129i \(-0.329617\pi\)
\(278\) 47.6274 + 19.7279i 2.85650 + 1.18320i
\(279\) −5.48528 + 13.2426i −0.328395 + 0.792816i
\(280\) −6.24264 + 6.24264i −0.373069 + 0.373069i
\(281\) 1.34315 1.34315i 0.0801254 0.0801254i −0.665908 0.746034i \(-0.731956\pi\)
0.746034 + 0.665908i \(0.231956\pi\)
\(282\) −5.17157 + 12.4853i −0.307963 + 0.743488i
\(283\) 17.2426 + 7.14214i 1.02497 + 0.424556i 0.830894 0.556431i \(-0.187830\pi\)
0.194075 + 0.980987i \(0.437830\pi\)
\(284\) 7.92893 + 19.1421i 0.470496 + 1.13588i
\(285\) 0.686292i 0.0406524i
\(286\) 8.24264 3.41421i 0.487398 0.201887i
\(287\) 2.24264 + 2.24264i 0.132379 + 0.132379i
\(288\) −2.89949 −0.170854
\(289\) 0 0
\(290\) −0.585786 −0.0343986
\(291\) −7.89949 7.89949i −0.463077 0.463077i
\(292\) 45.7487 18.9497i 2.67724 1.10895i
\(293\) 12.3431i 0.721094i −0.932741 0.360547i \(-0.882590\pi\)
0.932741 0.360547i \(-0.117410\pi\)
\(294\) −0.171573 0.414214i −0.0100063 0.0241574i
\(295\) 4.24264 + 1.75736i 0.247016 + 0.102317i
\(296\) 15.6066 37.6777i 0.907115 2.18997i
\(297\) 9.65685 9.65685i 0.560348 0.560348i
\(298\) −28.9706 + 28.9706i −1.67822 + 1.67822i
\(299\) 2.58579 6.24264i 0.149540 0.361021i
\(300\) −16.8995 7.00000i −0.975693 0.404145i
\(301\) 0.828427 + 2.00000i 0.0477497 + 0.115278i
\(302\) 17.3137i 0.996292i
\(303\) 10.5858 4.38478i 0.608138 0.251899i
\(304\) 1.75736 + 1.75736i 0.100791 + 0.100791i
\(305\) 2.92893 0.167710
\(306\) 0 0
\(307\) −26.1421 −1.49201 −0.746005 0.665940i \(-0.768031\pi\)
−0.746005 + 0.665940i \(0.768031\pi\)
\(308\) −18.4853 18.4853i −1.05330 1.05330i
\(309\) −12.4853 + 5.17157i −0.710263 + 0.294201i
\(310\) 14.4853i 0.822709i
\(311\) 9.82843 + 23.7279i 0.557319 + 1.34549i 0.911881 + 0.410455i \(0.134630\pi\)
−0.354562 + 0.935032i \(0.615370\pi\)
\(312\) −6.24264 2.58579i −0.353420 0.146391i
\(313\) −3.77817 + 9.12132i −0.213555 + 0.515568i −0.993965 0.109701i \(-0.965011\pi\)
0.780410 + 0.625269i \(0.215011\pi\)
\(314\) 16.4853 16.4853i 0.930318 0.930318i
\(315\) −2.58579 + 2.58579i −0.145693 + 0.145693i
\(316\) 7.00000 16.8995i 0.393781 0.950671i
\(317\) −17.7782 7.36396i −0.998522 0.413601i −0.177267 0.984163i \(-0.556726\pi\)
−0.821255 + 0.570562i \(0.806726\pi\)
\(318\) −1.41421 3.41421i −0.0793052 0.191460i
\(319\) 0.828427i 0.0463830i
\(320\) 6.94975 2.87868i 0.388503 0.160923i
\(321\) −0.343146 0.343146i −0.0191525 0.0191525i
\(322\) −30.1421 −1.67976
\(323\) 0 0
\(324\) −0.656854 −0.0364919
\(325\) −4.41421 4.41421i −0.244857 0.244857i
\(326\) −18.8995 + 7.82843i −1.04675 + 0.433576i
\(327\) 16.8284i 0.930614i
\(328\) 2.05025 + 4.94975i 0.113206 + 0.273304i
\(329\) 12.4853 + 5.17157i 0.688336 + 0.285118i
\(330\) −2.00000 + 4.82843i −0.110096 + 0.265796i
\(331\) 15.4142 15.4142i 0.847242 0.847242i −0.142546 0.989788i \(-0.545529\pi\)
0.989788 + 0.142546i \(0.0455290\pi\)
\(332\) 31.5563 31.5563i 1.73188 1.73188i
\(333\) 6.46447 15.6066i 0.354251 0.855237i
\(334\) −4.41421 1.82843i −0.241535 0.100047i
\(335\) −0.343146 0.828427i −0.0187481 0.0452618i
\(336\) 8.48528i 0.462910i
\(337\) 5.19239 2.15076i 0.282847 0.117159i −0.236750 0.971571i \(-0.576082\pi\)
0.519597 + 0.854411i \(0.326082\pi\)
\(338\) 18.7782 + 18.7782i 1.02140 + 1.02140i
\(339\) 14.2843 0.775815
\(340\) 0 0
\(341\) 20.4853 1.10934
\(342\) 2.58579 + 2.58579i 0.139823 + 0.139823i
\(343\) −17.3137 + 7.17157i −0.934852 + 0.387229i
\(344\) 3.65685i 0.197164i
\(345\) 1.51472 + 3.65685i 0.0815497 + 0.196878i
\(346\) −6.53553 2.70711i −0.351352 0.145535i
\(347\) 6.41421 15.4853i 0.344333 0.831293i −0.652934 0.757415i \(-0.726462\pi\)
0.997267 0.0738788i \(-0.0235378\pi\)
\(348\) −0.928932 + 0.928932i −0.0497960 + 0.0497960i
\(349\) −3.00000 + 3.00000i −0.160586 + 0.160586i −0.782826 0.622240i \(-0.786223\pi\)
0.622240 + 0.782826i \(0.286223\pi\)
\(350\) −10.6569 + 25.7279i −0.569633 + 1.37522i
\(351\) −6.82843 2.82843i −0.364474 0.150970i
\(352\) 1.58579 + 3.82843i 0.0845227 + 0.204056i
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 14.4853 6.00000i 0.769884 0.318896i
\(355\) −2.92893 2.92893i −0.155452 0.155452i
\(356\) −25.2132 −1.33630
\(357\) 0 0
\(358\) 14.4853 0.765571
\(359\) 20.3848 + 20.3848i 1.07587 + 1.07587i 0.996875 + 0.0789921i \(0.0251702\pi\)
0.0789921 + 0.996875i \(0.474830\pi\)
\(360\) −5.70711 + 2.36396i −0.300791 + 0.124592i
\(361\) 18.3137i 0.963879i
\(362\) 10.7782 + 26.0208i 0.566488 + 1.36762i
\(363\) 4.17157 + 1.72792i 0.218951 + 0.0906924i
\(364\) −5.41421 + 13.0711i −0.283782 + 0.685110i
\(365\) −7.00000 + 7.00000i −0.366397 + 0.366397i
\(366\) 7.07107 7.07107i 0.369611 0.369611i
\(367\) −1.68629 + 4.07107i −0.0880237 + 0.212508i −0.961761 0.273890i \(-0.911690\pi\)
0.873737 + 0.486398i \(0.161690\pi\)
\(368\) −13.2426 5.48528i −0.690320 0.285940i
\(369\) 0.849242 + 2.05025i 0.0442098 + 0.106732i
\(370\) 17.0711i 0.887483i
\(371\) −3.41421 + 1.41421i −0.177257 + 0.0734223i
\(372\) −22.9706 22.9706i −1.19097 1.19097i
\(373\) 11.5563 0.598365 0.299183 0.954196i \(-0.403286\pi\)
0.299183 + 0.954196i \(0.403286\pi\)
\(374\) 0 0
\(375\) 7.79899 0.402738
\(376\) 16.1421 + 16.1421i 0.832467 + 0.832467i
\(377\) −0.414214 + 0.171573i −0.0213331 + 0.00883645i
\(378\) 32.9706i 1.69582i
\(379\) −1.00000 2.41421i −0.0513665 0.124010i 0.896113 0.443826i \(-0.146379\pi\)
−0.947480 + 0.319816i \(0.896379\pi\)
\(380\) −2.24264 0.928932i −0.115045 0.0476532i
\(381\) −2.20101 + 5.31371i −0.112761 + 0.272230i
\(382\) −34.1421 + 34.1421i −1.74686 + 1.74686i
\(383\) 15.8995 15.8995i 0.812426 0.812426i −0.172571 0.984997i \(-0.555207\pi\)
0.984997 + 0.172571i \(0.0552074\pi\)
\(384\) 8.51472 20.5563i 0.434515 1.04901i
\(385\) 4.82843 + 2.00000i 0.246079 + 0.101929i
\(386\) −2.12132 5.12132i −0.107972 0.260668i
\(387\) 1.51472i 0.0769975i
\(388\) −36.5061 + 15.1213i −1.85332 + 0.767669i
\(389\) 8.58579 + 8.58579i 0.435317 + 0.435317i 0.890432 0.455116i \(-0.150402\pi\)
−0.455116 + 0.890432i \(0.650402\pi\)
\(390\) 2.82843 0.143223
\(391\) 0 0
\(392\) −0.757359 −0.0382524
\(393\) 11.6569 + 11.6569i 0.588011 + 0.588011i
\(394\) −10.3640 + 4.29289i −0.522129 + 0.216273i
\(395\) 3.65685i 0.183996i
\(396\) −7.00000 16.8995i −0.351763 0.849232i
\(397\) −16.4350 6.80761i −0.824850 0.341664i −0.0699884 0.997548i \(-0.522296\pi\)
−0.754862 + 0.655884i \(0.772296\pi\)
\(398\) −10.6569 + 25.7279i −0.534180 + 1.28962i
\(399\) −1.65685 + 1.65685i −0.0829465 + 0.0829465i
\(400\) −9.36396 + 9.36396i −0.468198 + 0.468198i
\(401\) −0.221825 + 0.535534i −0.0110774 + 0.0267433i −0.929321 0.369272i \(-0.879607\pi\)
0.918244 + 0.396015i \(0.129607\pi\)
\(402\) −2.82843 1.17157i −0.141069 0.0584327i
\(403\) −4.24264 10.2426i −0.211341 0.510222i
\(404\) 40.5269i 2.01629i
\(405\) 0.121320 0.0502525i 0.00602846 0.00249707i
\(406\) 1.41421 + 1.41421i 0.0701862 + 0.0701862i
\(407\) −24.1421 −1.19668
\(408\) 0 0
\(409\) −3.31371 −0.163852 −0.0819262 0.996638i \(-0.526107\pi\)
−0.0819262 + 0.996638i \(0.526107\pi\)
\(410\) −1.58579 1.58579i −0.0783164 0.0783164i
\(411\) 16.7279 6.92893i 0.825128 0.341779i
\(412\) 47.7990i 2.35489i
\(413\) −6.00000 14.4853i −0.295241 0.712774i
\(414\) −19.4853 8.07107i −0.957649 0.396671i
\(415\) −3.41421 + 8.24264i −0.167597 + 0.404615i
\(416\) 1.58579 1.58579i 0.0777496 0.0777496i
\(417\) −16.3431 + 16.3431i −0.800327 + 0.800327i
\(418\) 2.00000 4.82843i 0.0978232 0.236166i
\(419\) 12.3137 + 5.10051i 0.601564 + 0.249176i 0.662617 0.748959i \(-0.269446\pi\)
−0.0610528 + 0.998135i \(0.519446\pi\)
\(420\) −3.17157 7.65685i −0.154757 0.373616i
\(421\) 14.5858i 0.710868i −0.934701 0.355434i \(-0.884333\pi\)
0.934701 0.355434i \(-0.115667\pi\)
\(422\) −47.6274 + 19.7279i −2.31847 + 0.960340i
\(423\) 6.68629 + 6.68629i 0.325099 + 0.325099i
\(424\) −6.24264 −0.303169
\(425\) 0 0
\(426\) −14.1421 −0.685189
\(427\) −7.07107 7.07107i −0.342193 0.342193i
\(428\) −1.58579 + 0.656854i −0.0766519 + 0.0317502i
\(429\) 4.00000i 0.193122i
\(430\) −0.585786 1.41421i −0.0282491 0.0681994i
\(431\) −6.75736 2.79899i −0.325491 0.134823i 0.213954 0.976844i \(-0.431366\pi\)
−0.539445 + 0.842021i \(0.681366\pi\)
\(432\) −6.00000 + 14.4853i −0.288675 + 0.696923i
\(433\) −14.7279 + 14.7279i −0.707779 + 0.707779i −0.966068 0.258289i \(-0.916841\pi\)
0.258289 + 0.966068i \(0.416841\pi\)
\(434\) −34.9706 + 34.9706i −1.67864 + 1.67864i
\(435\) 0.100505 0.242641i 0.00481885 0.0116337i
\(436\) 54.9914 + 22.7782i 2.63361 + 1.09088i
\(437\) −1.51472 3.65685i −0.0724588 0.174931i
\(438\) 33.7990i 1.61498i
\(439\) 9.82843 4.07107i 0.469085 0.194301i −0.135604 0.990763i \(-0.543297\pi\)
0.604689 + 0.796462i \(0.293297\pi\)
\(440\) 6.24264 + 6.24264i 0.297606 + 0.297606i
\(441\) −0.313708 −0.0149385
\(442\) 0 0
\(443\) −23.7990 −1.13072 −0.565362 0.824843i \(-0.691264\pi\)
−0.565362 + 0.824843i \(0.691264\pi\)
\(444\) 27.0711 + 27.0711i 1.28474 + 1.28474i
\(445\) 4.65685 1.92893i 0.220756 0.0914402i
\(446\) 11.6569i 0.551968i
\(447\) −7.02944 16.9706i −0.332481 0.802680i
\(448\) −23.7279 9.82843i −1.12104 0.464350i
\(449\) 4.63604 11.1924i 0.218788 0.528201i −0.775933 0.630815i \(-0.782721\pi\)
0.994721 + 0.102614i \(0.0327206\pi\)
\(450\) −13.7782 + 13.7782i −0.649509 + 0.649509i
\(451\) 2.24264 2.24264i 0.105602 0.105602i
\(452\) 19.3345 46.6777i 0.909419 2.19553i
\(453\) 7.17157 + 2.97056i 0.336950 + 0.139569i
\(454\) −16.0711 38.7990i −0.754253 1.82093i
\(455\) 2.82843i 0.132599i
\(456\) −3.65685 + 1.51472i −0.171248 + 0.0709332i
\(457\) −9.31371 9.31371i −0.435677 0.435677i 0.454877 0.890554i \(-0.349683\pi\)
−0.890554 + 0.454877i \(0.849683\pi\)
\(458\) 41.4558 1.93710
\(459\) 0 0
\(460\) 14.0000 0.652753
\(461\) −17.0000 17.0000i −0.791769 0.791769i 0.190013 0.981782i \(-0.439147\pi\)
−0.981782 + 0.190013i \(0.939147\pi\)
\(462\) 16.4853 6.82843i 0.766965 0.317687i
\(463\) 14.6274i 0.679794i 0.940463 + 0.339897i \(0.110392\pi\)
−0.940463 + 0.339897i \(0.889608\pi\)
\(464\) 0.363961 + 0.878680i 0.0168965 + 0.0407917i
\(465\) 6.00000 + 2.48528i 0.278243 + 0.115252i
\(466\) −8.12132 + 19.6066i −0.376213 + 0.908258i
\(467\) −23.0711 + 23.0711i −1.06760 + 1.06760i −0.0700588 + 0.997543i \(0.522319\pi\)
−0.997543 + 0.0700588i \(0.977681\pi\)
\(468\) −7.00000 + 7.00000i −0.323575 + 0.323575i
\(469\) −1.17157 + 2.82843i −0.0540982 + 0.130605i
\(470\) −8.82843 3.65685i −0.407225 0.168678i
\(471\) 4.00000 + 9.65685i 0.184310 + 0.444964i
\(472\) 26.4853i 1.21908i
\(473\) 2.00000 0.828427i 0.0919601 0.0380911i
\(474\) 8.82843 + 8.82843i 0.405503 + 0.405503i
\(475\) −3.65685 −0.167788
\(476\) 0 0
\(477\) −2.58579 −0.118395
\(478\) 25.3137 + 25.3137i 1.15782 + 1.15782i
\(479\) −4.75736 + 1.97056i −0.217369 + 0.0900373i −0.488711 0.872446i \(-0.662533\pi\)
0.271342 + 0.962483i \(0.412533\pi\)
\(480\) 1.31371i 0.0599623i
\(481\) 5.00000 + 12.0711i 0.227980 + 0.550393i
\(482\) 7.94975 + 3.29289i 0.362101 + 0.149987i
\(483\) 5.17157 12.4853i 0.235315 0.568100i
\(484\) 11.2929 11.2929i 0.513313 0.513313i
\(485\) 5.58579 5.58579i 0.253637 0.253637i
\(486\) −14.3137 + 34.5563i −0.649283 + 1.56751i
\(487\) −24.3137 10.0711i −1.10176 0.456364i −0.243667 0.969859i \(-0.578350\pi\)
−0.858092 + 0.513495i \(0.828350\pi\)
\(488\) −6.46447 15.6066i −0.292633 0.706478i
\(489\) 9.17157i 0.414753i
\(490\) 0.292893 0.121320i 0.0132316 0.00548069i
\(491\) −26.2426 26.2426i −1.18431 1.18431i −0.978615 0.205698i \(-0.934053\pi\)
−0.205698 0.978615i \(-0.565947\pi\)
\(492\) −5.02944 −0.226745
\(493\) 0 0
\(494\) −2.82843 −0.127257
\(495\) 2.58579 + 2.58579i 0.116222 + 0.116222i
\(496\) −21.7279 + 9.00000i −0.975613 + 0.404112i
\(497\) 14.1421i 0.634361i
\(498\) 11.6569 + 28.1421i 0.522356 + 1.26108i
\(499\) 19.8284 + 8.21320i 0.887642 + 0.367673i 0.779456 0.626457i \(-0.215496\pi\)
0.108186 + 0.994131i \(0.465496\pi\)
\(500\) 10.5563 25.4853i 0.472094 1.13974i
\(501\) 1.51472 1.51472i 0.0676726 0.0676726i
\(502\) 34.9706 34.9706i 1.56081 1.56081i
\(503\) −8.17157 + 19.7279i −0.364352 + 0.879625i 0.630301 + 0.776351i \(0.282932\pi\)
−0.994653 + 0.103273i \(0.967068\pi\)
\(504\) 19.4853 + 8.07107i 0.867943 + 0.359514i
\(505\) 3.10051 + 7.48528i 0.137971 + 0.333091i
\(506\) 30.1421i 1.33998i
\(507\) −11.0000 + 4.55635i −0.488527 + 0.202355i
\(508\) 14.3848 + 14.3848i 0.638221 + 0.638221i
\(509\) −36.9706 −1.63869 −0.819346 0.573300i \(-0.805663\pi\)
−0.819346 + 0.573300i \(0.805663\pi\)
\(510\) 0 0
\(511\) 33.7990 1.49518
\(512\) −22.0919 22.0919i −0.976333 0.976333i
\(513\) −4.00000 + 1.65685i −0.176604 + 0.0731519i
\(514\) 14.8284i 0.654054i
\(515\) −3.65685 8.82843i −0.161140 0.389027i
\(516\) −3.17157 1.31371i −0.139621 0.0578328i
\(517\) 5.17157 12.4853i 0.227446 0.549102i
\(518\) 41.2132 41.2132i 1.81080 1.81080i
\(519\) 2.24264 2.24264i 0.0984410 0.0984410i
\(520\) 1.82843 4.41421i 0.0801818 0.193576i
\(521\) −17.1924 7.12132i −0.753212 0.311991i −0.0271607 0.999631i \(-0.508647\pi\)
−0.726051 + 0.687640i \(0.758647\pi\)
\(522\) 0.535534 + 1.29289i 0.0234397 + 0.0565884i
\(523\) 1.17157i 0.0512293i −0.999672 0.0256147i \(-0.991846\pi\)
0.999672 0.0256147i \(-0.00815429\pi\)
\(524\) 53.8701 22.3137i 2.35332 0.974779i
\(525\) −8.82843 8.82843i −0.385304 0.385304i
\(526\) 25.3137 1.10373
\(527\) 0 0
\(528\) 8.48528 0.369274
\(529\) −0.121320 0.121320i −0.00527480 0.00527480i
\(530\) 2.41421 1.00000i 0.104867 0.0434372i
\(531\) 10.9706i 0.476082i
\(532\) 3.17157 + 7.65685i 0.137505 + 0.331967i
\(533\) −1.58579 0.656854i −0.0686880 0.0284515i
\(534\) 6.58579 15.8995i 0.284995 0.688038i
\(535\) 0.242641 0.242641i 0.0104903 0.0104903i
\(536\) −3.65685 + 3.65685i −0.157952 + 0.157952i
\(537\) −2.48528 + 6.00000i −0.107248 + 0.258919i
\(538\) −58.9914 24.4350i −2.54330 1.05347i
\(539\) 0.171573 + 0.414214i 0.00739017 + 0.0178414i
\(540\) 15.3137i 0.658997i
\(541\) 17.0208 7.05025i 0.731782 0.303114i 0.0144979 0.999895i \(-0.495385\pi\)
0.717284 + 0.696781i \(0.245385\pi\)
\(542\) 37.7990 + 37.7990i 1.62361 + 1.62361i
\(543\) −12.6274 −0.541894
\(544\) 0 0
\(545\) −11.8995 −0.509718
\(546\) −6.82843 6.82843i −0.292230 0.292230i
\(547\) −7.48528 + 3.10051i −0.320048 + 0.132568i −0.536923 0.843631i \(-0.680413\pi\)
0.216875 + 0.976199i \(0.430413\pi\)
\(548\) 64.0416i 2.73572i
\(549\) −2.67767 6.46447i −0.114280 0.275897i
\(550\) 25.7279 + 10.6569i 1.09704 + 0.454410i
\(551\) −0.100505 + 0.242641i −0.00428166 + 0.0103368i
\(552\) 16.1421 16.1421i 0.687055 0.687055i
\(553\) 8.82843 8.82843i 0.375423 0.375423i
\(554\) 18.4350 44.5061i 0.783229 1.89088i
\(555\) −7.07107 2.92893i −0.300150 0.124326i
\(556\) 31.2843 + 75.5269i 1.32675 + 3.20305i
\(557\) 19.7574i 0.837146i 0.908183 + 0.418573i \(0.137470\pi\)
−0.908183 + 0.418573i \(0.862530\pi\)
\(558\) −31.9706 + 13.2426i −1.35342 + 0.560606i
\(559\) −0.828427 0.828427i −0.0350387 0.0350387i
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 4.58579 0.193440
\(563\) −24.5858 24.5858i −1.03617 1.03617i −0.999321 0.0368464i \(-0.988269\pi\)
−0.0368464 0.999321i \(-0.511731\pi\)
\(564\) −19.7990 + 8.20101i −0.833688 + 0.345325i
\(565\) 10.1005i 0.424931i
\(566\) 17.2426 + 41.6274i 0.724762 + 1.74973i
\(567\) −0.414214 0.171573i −0.0173953 0.00720538i
\(568\) −9.14214 + 22.0711i −0.383595 + 0.926081i
\(569\) −8.51472 + 8.51472i −0.356956 + 0.356956i −0.862690 0.505734i \(-0.831222\pi\)
0.505734 + 0.862690i \(0.331222\pi\)
\(570\) 1.17157 1.17157i 0.0490718 0.0490718i
\(571\) −1.62742 + 3.92893i −0.0681053 + 0.164421i −0.954267 0.298955i \(-0.903362\pi\)
0.886162 + 0.463376i \(0.153362\pi\)
\(572\) 13.0711 + 5.41421i 0.546529 + 0.226380i
\(573\) −8.28427 20.0000i −0.346080 0.835512i
\(574\) 7.65685i 0.319591i
\(575\) 19.4853 8.07107i 0.812592 0.336587i
\(576\) −12.7071 12.7071i −0.529463 0.529463i
\(577\) −27.0711 −1.12698 −0.563492 0.826122i \(-0.690542\pi\)
−0.563492 + 0.826122i \(0.690542\pi\)
\(578\) 0 0
\(579\) 2.48528 0.103285
\(580\) −0.656854 0.656854i −0.0272744 0.0272744i
\(581\) 28.1421 11.6569i 1.16753 0.483608i
\(582\) 26.9706i 1.11797i
\(583\) 1.41421 + 3.41421i 0.0585707 + 0.141402i
\(584\) 52.7487 + 21.8492i 2.18276 + 0.904128i
\(585\) 0.757359 1.82843i 0.0313130 0.0755962i
\(586\) 21.0711 21.0711i 0.870438 0.870438i
\(587\) −32.0416 + 32.0416i −1.32250 + 1.32250i −0.410753 + 0.911747i \(0.634734\pi\)
−0.911747 + 0.410753i \(0.865266\pi\)
\(588\) 0.272078 0.656854i 0.0112203 0.0270882i
\(589\) −6.00000 2.48528i −0.247226 0.102404i
\(590\) 4.24264 + 10.2426i 0.174667 + 0.421683i
\(591\) 5.02944i 0.206883i
\(592\) 25.6066 10.6066i 1.05242 0.435929i
\(593\) −9.14214 9.14214i −0.375423 0.375423i 0.494025 0.869448i \(-0.335525\pi\)
−0.869448 + 0.494025i \(0.835525\pi\)
\(594\) 32.9706 1.35280
\(595\) 0 0
\(596\) −64.9706 −2.66130
\(597\) −8.82843 8.82843i −0.361323 0.361323i
\(598\) 15.0711 6.24264i 0.616302 0.255281i
\(599\) 10.6274i 0.434224i −0.976147 0.217112i \(-0.930336\pi\)
0.976147 0.217112i \(-0.0696638\pi\)
\(600\) −8.07107 19.4853i −0.329500 0.795483i
\(601\) 7.77817 + 3.22183i 0.317278 + 0.131421i 0.535639 0.844447i \(-0.320071\pi\)
−0.218360 + 0.975868i \(0.570071\pi\)
\(602\) −2.00000 + 4.82843i −0.0815139 + 0.196792i
\(603\) −1.51472 + 1.51472i −0.0616841 + 0.0616841i
\(604\) 19.4142 19.4142i 0.789953 0.789953i
\(605\) −1.22183 + 2.94975i −0.0496743 + 0.119924i
\(606\) 25.5563 + 10.5858i 1.03816 + 0.430018i
\(607\) 6.27208 + 15.1421i 0.254576 + 0.614600i 0.998563 0.0535937i \(-0.0170676\pi\)
−0.743987 + 0.668194i \(0.767068\pi\)
\(608\) 1.31371i 0.0532779i
\(609\) −0.828427 + 0.343146i −0.0335696 + 0.0139050i
\(610\) 5.00000 + 5.00000i 0.202444 + 0.202444i
\(611\) −7.31371 −0.295881
\(612\) 0 0
\(613\) 5.31371 0.214619 0.107309 0.994226i \(-0.465776\pi\)
0.107309 + 0.994226i \(0.465776\pi\)
\(614\) −44.6274 44.6274i −1.80102 1.80102i
\(615\) 0.928932 0.384776i 0.0374582 0.0155157i
\(616\) 30.1421i 1.21446i
\(617\) −1.12132 2.70711i −0.0451427 0.108984i 0.899700 0.436509i \(-0.143785\pi\)
−0.944842 + 0.327525i \(0.893785\pi\)
\(618\) −30.1421 12.4853i −1.21249 0.502232i
\(619\) 10.8995 26.3137i 0.438088 1.05764i −0.538521 0.842612i \(-0.681017\pi\)
0.976609 0.215025i \(-0.0689833\pi\)
\(620\) 16.2426 16.2426i 0.652320 0.652320i
\(621\) 17.6569 17.6569i 0.708545 0.708545i
\(622\) −23.7279 + 57.2843i −0.951403 + 2.29689i
\(623\) −15.8995 6.58579i −0.637000 0.263854i
\(624\) −1.75736 4.24264i −0.0703507 0.169842i
\(625\) 16.5563i 0.662254i
\(626\) −22.0208 + 9.12132i −0.880129 + 0.364561i
\(627\) 1.65685 + 1.65685i 0.0661684 + 0.0661684i
\(628\) 36.9706 1.47529
\(629\) 0 0
\(630\) −8.82843 −0.351733
\(631\) 20.7279 + 20.7279i 0.825166 + 0.825166i 0.986844 0.161678i \(-0.0516906\pi\)
−0.161678 + 0.986844i \(0.551691\pi\)
\(632\) 19.4853 8.07107i 0.775083 0.321050i
\(633\) 23.1127i 0.918647i
\(634\) −17.7782 42.9203i −0.706062 1.70458i
\(635\) −3.75736 1.55635i −0.149106 0.0617618i
\(636\) 2.24264 5.41421i 0.0889265 0.214688i
\(637\) 0.171573 0.171573i 0.00679796 0.00679796i
\(638\) 1.41421 1.41421i 0.0559893 0.0559893i
\(639\) −3.78680 + 9.14214i −0.149803 + 0.361657i
\(640\) 14.5355 + 6.02082i 0.574567 + 0.237994i
\(641\) −15.8492 38.2635i −0.626007 1.51132i −0.844544 0.535487i \(-0.820128\pi\)
0.218536 0.975829i \(-0.429872\pi\)
\(642\) 1.17157i 0.0462383i
\(643\) −26.6569 + 11.0416i −1.05124 + 0.435439i −0.840336 0.542066i \(-0.817642\pi\)
−0.210908 + 0.977506i \(0.567642\pi\)
\(644\) −33.7990 33.7990i −1.33187 1.33187i
\(645\) 0.686292 0.0270227
\(646\) 0 0
\(647\) −2.82843 −0.111197 −0.0555985 0.998453i \(-0.517707\pi\)
−0.0555985 + 0.998453i \(0.517707\pi\)
\(648\) −0.535534 0.535534i −0.0210378 0.0210378i
\(649\) −14.4853 + 6.00000i −0.568597 + 0.235521i
\(650\) 15.0711i 0.591136i
\(651\) −8.48528 20.4853i −0.332564 0.802881i
\(652\) −29.9706 12.4142i −1.17374 0.486178i
\(653\) 3.63604 8.77817i 0.142289 0.343517i −0.836629 0.547770i \(-0.815477\pi\)
0.978918 + 0.204254i \(0.0654768\pi\)
\(654\) −28.7279 + 28.7279i −1.12335 + 1.12335i
\(655\) −8.24264 + 8.24264i −0.322067 + 0.322067i
\(656\) −1.39340 + 3.36396i −0.0544031 + 0.131341i
\(657\) 21.8492 + 9.05025i 0.852420 + 0.353084i
\(658\) 12.4853 + 30.1421i 0.486727 + 1.17506i
\(659\) 8.48528i 0.330540i 0.986248 + 0.165270i \(0.0528495\pi\)
−0.986248 + 0.165270i \(0.947151\pi\)
\(660\) −7.65685 + 3.17157i −0.298043 + 0.123453i
\(661\) −0.857864 0.857864i −0.0333671 0.0333671i 0.690226 0.723593i \(-0.257511\pi\)
−0.723593 + 0.690226i \(0.757511\pi\)
\(662\) 52.6274 2.04542
\(663\) 0 0
\(664\) 51.4558 1.99687
\(665\) −1.17157 1.17157i −0.0454316 0.0454316i
\(666\) 37.6777 15.6066i 1.45998 0.604744i
\(667\) 1.51472i 0.0586501i
\(668\) −2.89949 7.00000i −0.112185 0.270838i
\(669\) 4.82843 + 2.00000i 0.186678 + 0.0773245i
\(670\) 0.828427 2.00000i 0.0320049 0.0772667i
\(671\) −7.07107 + 7.07107i −0.272976 + 0.272976i
\(672\) 3.17157 3.17157i 0.122346 0.122346i
\(673\) 1.70711 4.12132i 0.0658041 0.158865i −0.887556 0.460699i \(-0.847599\pi\)
0.953361 + 0.301834i \(0.0975988\pi\)
\(674\) 12.5355 + 5.19239i 0.482851 + 0.200003i
\(675\) −8.82843 21.3137i −0.339806 0.820365i
\(676\) 42.1127i 1.61972i
\(677\) 35.1924 14.5772i 1.35255 0.560246i 0.415551 0.909570i \(-0.363589\pi\)
0.937002 + 0.349324i \(0.113589\pi\)
\(678\) 24.3848 + 24.3848i 0.936492 + 0.936492i
\(679\) −26.9706 −1.03504
\(680\) 0 0
\(681\) 18.8284 0.721507
\(682\) 34.9706 + 34.9706i 1.33909 + 1.33909i
\(683\) 21.9706 9.10051i 0.840680 0.348221i 0.0795585 0.996830i \(-0.474649\pi\)
0.761122 + 0.648609i \(0.224649\pi\)
\(684\) 5.79899i 0.221730i
\(685\) 4.89949 + 11.8284i 0.187200 + 0.451941i
\(686\) −41.7990 17.3137i −1.59589 0.661040i
\(687\) −7.11270 + 17.1716i −0.271366 + 0.655136i
\(688\) −1.75736 + 1.75736i −0.0669987 + 0.0669987i
\(689\) 1.41421 1.41421i 0.0538772 0.0538772i
\(690\) −3.65685 + 8.82843i −0.139214 + 0.336092i
\(691\) 18.4142 + 7.62742i 0.700510 + 0.290161i 0.704371 0.709832i \(-0.251229\pi\)
−0.00386139 + 0.999993i \(0.501229\pi\)
\(692\) −4.29289 10.3640i −0.163191 0.393979i
\(693\) 12.4853i 0.474277i
\(694\) 37.3848 15.4853i 1.41911 0.587813i
\(695\) −11.5563 11.5563i −0.438357 0.438357i
\(696\) −1.51472 −0.0574153
\(697\) 0 0
\(698\) −10.2426 −0.387690
\(699\) −6.72792 6.72792i −0.254473 0.254473i
\(700\) −40.7990 + 16.8995i −1.54206 + 0.638741i
\(701\) 37.6985i 1.42385i 0.702254 + 0.711926i \(0.252177\pi\)
−0.702254 + 0.711926i \(0.747823\pi\)
\(702\) −6.82843 16.4853i −0.257722 0.622197i
\(703\) 7.07107 + 2.92893i 0.266690 + 0.110467i
\(704\) −9.82843 + 23.7279i −0.370423 + 0.894280i
\(705\) 3.02944 3.02944i 0.114095 0.114095i
\(706\) −23.8995 + 23.8995i −0.899469 + 0.899469i
\(707\) 10.5858 25.5563i 0.398119 0.961145i
\(708\) 22.9706 + 9.51472i 0.863287 + 0.357585i
\(709\) 9.29289 + 22.4350i 0.349002 + 0.842565i 0.996738 + 0.0807007i \(0.0257158\pi\)
−0.647736 + 0.761864i \(0.724284\pi\)
\(710\) 10.0000i 0.375293i
\(711\) 8.07107 3.34315i 0.302689 0.125378i
\(712\) −20.5563 20.5563i −0.770382 0.770382i
\(713\) 37.4558 1.40273
\(714\) 0 0
\(715\) −2.82843 −0.105777
\(716\) 16.2426 + 16.2426i 0.607016 + 0.607016i
\(717\) −14.8284 + 6.14214i −0.553778 + 0.229382i
\(718\) 69.5980i 2.59737i
\(719\) −13.0000 31.3848i −0.484818 1.17045i −0.957295 0.289112i \(-0.906640\pi\)
0.472477 0.881343i \(-0.343360\pi\)
\(720\) −3.87868 1.60660i −0.144550 0.0598745i
\(721\) −12.4853 + 30.1421i −0.464976 + 1.12255i
\(722\) 31.2635 31.2635i 1.16351 1.16351i
\(723\) −2.72792 + 2.72792i −0.101453 + 0.101453i
\(724\) −17.0919 + 41.2635i −0.635215 + 1.53354i
\(725\) −1.29289 0.535534i −0.0480168 0.0198892i
\(726\) 4.17157 + 10.0711i 0.154822 + 0.373772i
\(727\) 43.1127i 1.59896i 0.600692 + 0.799481i \(0.294892\pi\)
−0.600692 + 0.799481i \(0.705108\pi\)
\(728\) −15.0711 + 6.24264i −0.558571 + 0.231368i
\(729\) −12.2218 12.2218i −0.452660 0.452660i
\(730\) −23.8995 −0.884560
\(731\) 0 0
\(732\) 15.8579 0.586124
\(733\) 25.4853 + 25.4853i 0.941320 + 0.941320i 0.998371 0.0570509i \(-0.0181697\pi\)
−0.0570509 + 0.998371i \(0.518170\pi\)
\(734\) −9.82843 + 4.07107i −0.362774 + 0.150266i
\(735\) 0.142136i 0.00524275i
\(736\) 2.89949 + 7.00000i 0.106877 + 0.258023i
\(737\) 2.82843 + 1.17157i 0.104186 + 0.0431554i
\(738\) −2.05025 + 4.94975i −0.0754708 + 0.182203i
\(739\) −15.7574 + 15.7574i −0.579644 + 0.579644i −0.934805 0.355161i \(-0.884426\pi\)
0.355161 + 0.934805i \(0.384426\pi\)
\(740\) −19.1421 + 19.1421i −0.703679 + 0.703679i
\(741\) 0.485281 1.17157i 0.0178273 0.0430388i
\(742\) −8.24264 3.41421i −0.302597 0.125340i
\(743\) 19.5269 + 47.1421i 0.716373 + 1.72948i 0.683426 + 0.730020i \(0.260489\pi\)
0.0329473 + 0.999457i \(0.489511\pi\)
\(744\) 37.4558i 1.37320i
\(745\) 12.0000 4.97056i 0.439646 0.182107i
\(746\) 19.7279 + 19.7279i 0.722291 + 0.722291i
\(747\) 21.3137 0.779828
\(748\) 0 0
\(749\) −1.17157 −0.0428083
\(750\) 13.3137 + 13.3137i 0.486148 + 0.486148i
\(751\) −43.9706 + 18.2132i −1.60451 + 0.664609i −0.992044 0.125889i \(-0.959822\pi\)
−0.612464 + 0.790498i \(0.709822\pi\)
\(752\) 15.5147i 0.565764i
\(753\) 8.48528 + 20.4853i 0.309221 + 0.746525i
\(754\) −1.00000 0.414214i −0.0364179 0.0150848i
\(755\) −2.10051 + 5.07107i −0.0764452 + 0.184555i
\(756\) −36.9706 + 36.9706i −1.34461 + 1.34461i
\(757\) 1.79899 1.79899i 0.0653854 0.0653854i −0.673658 0.739043i \(-0.735278\pi\)
0.739043 + 0.673658i \(0.235278\pi\)
\(758\) 2.41421 5.82843i 0.0876882 0.211698i
\(759\) −12.4853 5.17157i −0.453187 0.187716i
\(760\) −1.07107 2.58579i −0.0388517 0.0937963i
\(761\) 37.6985i 1.36657i −0.730152 0.683285i \(-0.760551\pi\)
0.730152 0.683285i \(-0.239449\pi\)
\(762\) −12.8284 + 5.31371i −0.464725 + 0.192495i
\(763\) 28.7279 + 28.7279i 1.04002 + 1.04002i
\(764\) −76.5685 −2.77015
\(765\) 0 0
\(766\) 54.2843 1.96137
\(767\) 6.00000 + 6.00000i 0.216647 + 0.216647i
\(768\) 29.9706 12.4142i 1.08147 0.447959i
\(769\) 12.7279i 0.458981i 0.973311 + 0.229490i \(0.0737059\pi\)
−0.973311 + 0.229490i \(0.926294\pi\)
\(770\) 4.82843 + 11.6569i 0.174004 + 0.420084i
\(771\) −6.14214 2.54416i −0.221204 0.0916255i
\(772\) 3.36396 8.12132i 0.121072 0.292293i
\(773\) 0.585786 0.585786i 0.0210693 0.0210693i −0.696494 0.717563i \(-0.745258\pi\)
0.717563 + 0.696494i \(0.245258\pi\)
\(774\) −2.58579 + 2.58579i −0.0929442 + 0.0929442i
\(775\) 13.2426 31.9706i 0.475690 1.14842i
\(776\) −42.0919 17.4350i −1.51101 0.625881i
\(777\) 10.0000 + 24.1421i 0.358748 + 0.866094i
\(778\) 29.3137i 1.05095i
\(779\) −0.928932 + 0.384776i −0.0332824 + 0.0137860i
\(780\) 3.17157 + 3.17157i 0.113561 + 0.113561i
\(781\) 14.1421 0.506045
\(782\) 0 0
\(783\) −1.65685 −0.0592111
\(784\) −0.363961 0.363961i −0.0129986 0.0129986i
\(785\) −6.82843 + 2.82843i −0.243717 + 0.100951i
\(786\) 39.7990i 1.41958i
\(787\) −7.87006 19.0000i −0.280537 0.677277i 0.719311 0.694688i \(-0.244458\pi\)
−0.999848 + 0.0174112i \(0.994458\pi\)
\(788\) −16.4350 6.80761i −0.585474 0.242511i
\(789\) −4.34315 + 10.4853i −0.154620 + 0.373286i
\(790\) −6.24264 + 6.24264i −0.222103 + 0.222103i
\(791\) 24.3848 24.3848i 0.867023 0.867023i
\(792\) 8.07107 19.4853i 0.286793 0.692379i
\(793\) 5.00000 + 2.07107i 0.177555 + 0.0735458i
\(794\) −16.4350 39.6777i −0.583257 1.40811i
\(795\) 1.17157i 0.0415514i
\(796\) −40.7990 + 16.8995i −1.44608 + 0.598987i
\(797\) 17.8284 + 17.8284i 0.631515 + 0.631515i 0.948448 0.316933i \(-0.102653\pi\)
−0.316933 + 0.948448i \(0.602653\pi\)
\(798\) −5.65685 −0.200250
\(799\) 0 0
\(800\) 7.00000 0.247487
\(801\) −8.51472 8.51472i −0.300853 0.300853i
\(802\) −1.29289 + 0.535534i −0.0456536 + 0.0189104i
\(803\) 33.7990i 1.19274i
\(804\) −1.85786 4.48528i −0.0655218 0.158184i
\(805\) 8.82843 + 3.65685i 0.311161 + 0.128887i
\(806\) 10.2426 24.7279i 0.360782 0.871004i
\(807\) 20.2426 20.2426i 0.712575 0.712575i
\(808\) 33.0416 33.0416i 1.16240 1.16240i
\(809\) −13.5061 + 32.6066i −0.474849 + 1.14639i 0.487146 + 0.873321i \(0.338038\pi\)
−0.961995 + 0.273067i \(0.911962\pi\)
\(810\) 0.292893 + 0.121320i 0.0102912 + 0.00426276i
\(811\) −21.1005 50.9411i −0.740939 1.78878i −0.602020 0.798481i \(-0.705637\pi\)
−0.138919 0.990304i \(-0.544363\pi\)
\(812\) 3.17157i 0.111300i
\(813\) −22.1421 + 9.17157i −0.776559 + 0.321661i
\(814\) −41.2132 41.2132i −1.44452 1.44452i
\(815\) 6.48528 0.227169
\(816\) 0 0
\(817\) −0.686292 −0.0240103
\(818\) −5.65685 5.65685i −0.197787 0.197787i
\(819\) −6.24264 + 2.58579i −0.218136 + 0.0903547i
\(820\) 3.55635i 0.124193i
\(821\) 14.7071 + 35.5061i 0.513282 + 1.23917i 0.941963 + 0.335716i \(0.108978\pi\)
−0.428682 + 0.903456i \(0.641022\pi\)
\(822\) 40.3848 + 16.7279i 1.40858 + 0.583453i
\(823\) 3.72792 9.00000i 0.129947 0.313720i −0.845492 0.533987i \(-0.820693\pi\)
0.975440 + 0.220267i \(0.0706929\pi\)
\(824\) −38.9706 + 38.9706i −1.35760 + 1.35760i
\(825\) −8.82843 + 8.82843i −0.307366 + 0.307366i
\(826\) 14.4853 34.9706i 0.504007 1.21678i
\(827\) 43.2843 + 17.9289i 1.50514 + 0.623450i 0.974549 0.224177i \(-0.0719693\pi\)
0.530593 + 0.847627i \(0.321969\pi\)
\(828\) −12.7990 30.8995i −0.444796 1.07383i
\(829\) 53.9411i 1.87345i −0.350062 0.936726i \(-0.613840\pi\)
0.350062 0.936726i \(-0.386160\pi\)
\(830\) −19.8995 + 8.24264i −0.690722 + 0.286106i
\(831\) 15.2721 + 15.2721i 0.529783 + 0.529783i
\(832\) 13.8995 0.481878
\(833\) 0 0
\(834\) −55.7990 −1.93216
\(835\) 1.07107 + 1.07107i 0.0370658 + 0.0370658i
\(836\) 7.65685 3.17157i 0.264818 0.109691i
\(837\) 40.9706i 1.41615i
\(838\) 12.3137 + 29.7279i 0.425370 + 1.02693i
\(839\) 15.4853 + 6.41421i 0.534611 + 0.221443i 0.633622 0.773643i \(-0.281568\pi\)
−0.0990102 + 0.995086i \(0.531568\pi\)
\(840\) 3.65685 8.82843i 0.126173 0.304610i
\(841\) 20.4350 20.4350i 0.704656 0.704656i
\(842\) 24.8995 24.8995i 0.858093 0.858093i
\(843\) −0.786797 + 1.89949i −0.0270987 + 0.0654221i
\(844\) −75.5269 31.2843i −2.59974 1.07685i
\(845\) −3.22183 7.77817i −0.110834 0.267577i
\(846\) 22.8284i 0.784857i
\(847\) 10.0711 4.17157i 0.346046 0.143337i
\(848\) −3.00000 3.00000i −0.103020 0.103020i
\(849\) −20.2010 −0.693297
\(850\) 0 0
\(851\) −44.1421 −1.51317
\(852\) −15.8579 15.8579i −0.543281 0.543281i
\(853\) 17.7071 7.33452i 0.606280 0.251129i −0.0583572 0.998296i \(-0.518586\pi\)
0.664637 + 0.747166i \(0.268586\pi\)
\(854\) 24.1421i 0.826127i
\(855\) −0.443651 1.07107i −0.0151725 0.0366297i
\(856\) −1.82843 0.757359i −0.0624944 0.0258860i
\(857\) −3.53553 + 8.53553i −0.120772 + 0.291568i −0.972691 0.232105i \(-0.925439\pi\)
0.851919 + 0.523673i \(0.175439\pi\)
\(858\) −6.82843 + 6.82843i −0.233119 + 0.233119i
\(859\) −24.7279 + 24.7279i −0.843706 + 0.843706i −0.989339 0.145633i \(-0.953478\pi\)
0.145633 + 0.989339i \(0.453478\pi\)
\(860\) 0.928932 2.24264i 0.0316763 0.0764734i
\(861\) −3.17157 1.31371i −0.108087 0.0447711i
\(862\) −6.75736 16.3137i −0.230157 0.555647i
\(863\) 10.6274i 0.361761i 0.983505 + 0.180881i \(0.0578948\pi\)
−0.983505 + 0.180881i \(0.942105\pi\)
\(864\) 7.65685 3.17157i 0.260491 0.107899i
\(865\) 1.58579 + 1.58579i 0.0539184 + 0.0539184i
\(866\) −50.2843 −1.70873
\(867\) 0 0
\(868\) −78.4264 −2.66197
\(869\) −8.82843 8.82843i −0.299484 0.299484i
\(870\) 0.585786 0.242641i 0.0198600 0.00822629i
\(871\) 1.65685i 0.0561404i
\(872\) 26.2635 + 63.4056i 0.889393 + 2.14718i
\(873\) −17.4350 7.22183i −0.590086 0.244422i
\(874\) 3.65685 8.82843i 0.123695 0.298626i
\(875\) 13.3137 13.3137i 0.450085 0.450085i
\(876\) −37.8995 + 37.8995i −1.28051 + 1.28051i
\(877\) 19.2218 46.4056i 0.649075 1.56701i −0.165031 0.986288i \(-0.552772\pi\)
0.814105 0.580717i \(-0.197228\pi\)
\(878\) 23.7279 + 9.82843i 0.800779 + 0.331693i
\(879\) 5.11270 + 12.3431i 0.172447 + 0.416324i
\(880\) 6.00000i 0.202260i
\(881\) −31.0919 + 12.8787i −1.04751 + 0.433894i −0.839003 0.544127i \(-0.816861\pi\)
−0.208509 + 0.978020i \(0.566861\pi\)
\(882\) −0.535534 0.535534i −0.0180324 0.0180324i
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) −4.97056 −0.167084
\(886\) −40.6274 40.6274i −1.36490 1.36490i
\(887\) −40.6985 + 16.8579i −1.36652 + 0.566032i −0.940843 0.338843i \(-0.889965\pi\)
−0.425678 + 0.904875i \(0.639965\pi\)
\(888\) 44.1421i 1.48131i
\(889\) 5.31371 + 12.8284i 0.178216 + 0.430252i
\(890\) 11.2426 + 4.65685i 0.376854 + 0.156098i
\(891\) −0.171573 + 0.414214i −0.00574791 + 0.0138767i
\(892\) 13.0711 13.0711i 0.437652 0.437652i
\(893\) −3.02944 + 3.02944i −0.101376 + 0.101376i
\(894\) 16.9706 40.9706i 0.567581 1.37026i
\(895\) −4.24264 1.75736i −0.141816 0.0587420i
\(896\) −20.5563 49.6274i −0.686739 1.65794i
\(897\) 7.31371i 0.244198i
\(898\) 27.0208 11.1924i 0.901696 0.373495i
\(899\) −1.75736 1.75736i −0.0586112 0.0586112i
\(900\) −30.8995 −1.02998
\(901\) 0 0
\(902\) 7.65685 0.254945
\(903\) −1.65685 1.65685i −0.0551367 0.0551367i
\(904\) 53.8198 22.2929i 1.79002 0.741451i
\(905\) 8.92893i 0.296808i
\(906\) 7.17157 + 17.3137i 0.238260 + 0.575209i
\(907\) −12.4142 5.14214i −0.412207 0.170742i 0.166936 0.985968i \(-0.446613\pi\)
−0.579143 + 0.815226i \(0.696613\pi\)
\(908\) 25.4853 61.5269i 0.845759 2.04184i
\(909\) 13.6863 13.6863i 0.453946 0.453946i
\(910\) 4.82843 4.82843i 0.160061 0.160061i
\(911\) 2.17157 5.24264i 0.0719474 0.173696i −0.883815 0.467837i \(-0.845033\pi\)
0.955762 + 0.294141i \(0.0950334\pi\)
\(912\) −2.48528 1.02944i −0.0822959 0.0340881i
\(913\) −11.6569 28.1421i −0.385786 0.931369i
\(914\) 31.7990i 1.05182i
\(915\) −2.92893 + 1.21320i −0.0968275 + 0.0401073i
\(916\) 46.4853 + 46.4853i 1.53592 + 1.53592i
\(917\) 39.7990 1.31428
\(918\) 0 0
\(919\) 19.3137 0.637100 0.318550 0.947906i \(-0.396804\pi\)
0.318550 + 0.947906i \(0.396804\pi\)
\(920\) 11.4142 + 11.4142i 0.376315 + 0.376315i
\(921\) 26.1421 10.8284i 0.861413 0.356809i
\(922\) 58.0416i 1.91150i
\(923\) −2.92893 7.07107i −0.0964070 0.232747i
\(924\) 26.1421 + 10.8284i 0.860013 + 0.356229i
\(925\) −15.6066 + 37.6777i −0.513142 + 1.23883i
\(926\) −24.9706 + 24.9706i −0.820584 + 0.820584i
\(927\) −16.1421 + 16.1421i −0.530177 + 0.530177i
\(928\) 0.192388 0.464466i 0.00631545 0.0152468i
\(929\) −16.0208 6.63604i −0.525626 0.217721i 0.104060 0.994571i \(-0.466817\pi\)
−0.629686 + 0.776850i \(0.716817\pi\)
\(930\) 6.00000 + 14.4853i 0.196748 + 0.474991i
\(931\) 0.142136i 0.00465831i
\(932\) −31.0919 + 12.8787i −1.01845 + 0.421855i
\(933\) −19.6569 19.6569i −0.643537 0.643537i
\(934\) −78.7696 −2.57742
\(935\) 0 0
\(936\) −11.4142 −0.373085
\(937\) −19.4853 19.4853i −0.636556 0.636556i 0.313148 0.949704i \(-0.398616\pi\)
−0.949704 + 0.313148i \(0.898616\pi\)
\(938\) −6.82843 + 2.82843i −0.222956 + 0.0923514i
\(939\) 10.6863i 0.348734i
\(940\) −5.79899 14.0000i −0.189142 0.456630i
\(941\) 36.8492 + 15.2635i 1.20125 + 0.497574i 0.891403 0.453212i \(-0.149722\pi\)
0.309848 + 0.950786i \(0.399722\pi\)
\(942\) −9.65685 + 23.3137i −0.314637 + 0.759602i
\(943\) 4.10051 4.10051i 0.133531 0.133531i
\(944\) 12.7279 12.7279i 0.414259 0.414259i
\(945\) 4.00000 9.65685i 0.130120 0.314137i
\(946\) 4.82843 + 2.00000i 0.156986 + 0.0650256i
\(947\) 11.7279 + 28.3137i 0.381106 + 0.920072i 0.991752 + 0.128168i \(0.0409098\pi\)
−0.610646 + 0.791904i \(0.709090\pi\)
\(948\) 19.7990i 0.643041i
\(949\) −16.8995 + 7.00000i −0.548581 + 0.227230i
\(950\) −6.24264 6.24264i −0.202538 0.202538i
\(951\) 20.8284 0.675408
\(952\) 0 0
\(953\) 49.6985 1.60989 0.804946 0.593348i \(-0.202194\pi\)
0.804946 + 0.593348i \(0.202194\pi\)
\(954\) −4.41421 4.41421i −0.142915 0.142915i
\(955\) 14.1421 5.85786i 0.457629 0.189556i
\(956\) 56.7696i 1.83606i
\(957\) 0.343146 + 0.828427i 0.0110923 + 0.0267792i
\(958\) −11.4853 4.75736i −0.371073 0.153703i
\(959\) 16.7279 40.3848i 0.540173 1.30409i
\(960\) −5.75736 + 5.75736i −0.185818 + 0.185818i
\(961\) 21.5355 21.5355i 0.694695 0.694695i
\(962\) −12.0711 + 29.1421i −0.389187 + 0.939580i
\(963\) −0.757359 0.313708i −0.0244056 0.0101091i
\(964\) 5.22183 + 12.6066i 0.168184 + 0.406031i
\(965\) 1.75736i 0.0565714i
\(966\) 30.1421 12.4853i 0.969807 0.401707i
\(967\) 30.8701 + 30.8701i 0.992714 + 0.992714i 0.999974 0.00725952i \(-0.00231080\pi\)
−0.00725952 + 0.999974i \(0.502311\pi\)
\(968\) 18.4142 0.591855
\(969\) 0 0
\(970\) 19.0711 0.612335
\(971\) 36.5858 + 36.5858i 1.17409 + 1.17409i 0.981224 + 0.192869i \(0.0617793\pi\)
0.192869 + 0.981224i \(0.438221\pi\)
\(972\) −54.7990 + 22.6985i −1.75768 + 0.728054i
\(973\) 55.7990i 1.78883i
\(974\) −24.3137 58.6985i −0.779061 1.88082i
\(975\) 6.24264 + 2.58579i 0.199925 + 0.0828114i
\(976\) 4.39340 10.6066i 0.140629 0.339509i
\(977\) 27.1421 27.1421i 0.868354 0.868354i −0.123936 0.992290i \(-0.539552\pi\)
0.992290 + 0.123936i \(0.0395519\pi\)
\(978\) 15.6569 15.6569i 0.500651 0.500651i
\(979\) −6.58579 + 15.8995i −0.210483 + 0.508150i
\(980\) 0.464466 + 0.192388i 0.0148368 + 0.00614561i
\(981\) 10.8787 + 26.2635i 0.347330 + 0.838528i
\(982\) 89.5980i 2.85919i
\(983\) −9.00000 + 3.72792i −0.287055 + 0.118902i −0.521565 0.853212i \(-0.674652\pi\)
0.234510 + 0.972114i \(0.424652\pi\)
\(984\) −4.10051 4.10051i −0.130719 0.130719i
\(985\) 3.55635 0.113315
\(986\) 0 0
\(987\) −14.6274 −0.465596
\(988\) −3.17157 3.17157i −0.100901 0.100901i
\(989\) 3.65685 1.51472i 0.116281 0.0481653i
\(990\) 8.82843i 0.280586i
\(991\) 15.6274 + 37.7279i 0.496421 + 1.19847i 0.951398 + 0.307964i \(0.0996475\pi\)
−0.454977 + 0.890503i \(0.650352\pi\)
\(992\) 11.4853 + 4.75736i 0.364658 + 0.151046i
\(993\) −9.02944 + 21.7990i −0.286541 + 0.691770i
\(994\) −24.1421 + 24.1421i −0.765742 + 0.765742i
\(995\) 6.24264 6.24264i 0.197905 0.197905i
\(996\) −18.4853 + 44.6274i −0.585729 + 1.41407i
\(997\) 6.94975 + 2.87868i 0.220101 + 0.0911687i 0.490009 0.871717i \(-0.336993\pi\)
−0.269908 + 0.962886i \(0.586993\pi\)
\(998\) 19.8284 + 47.8701i 0.627658 + 1.51530i
\(999\) 48.2843i 1.52765i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.2.d.b.155.1 4
17.2 even 8 289.2.d.a.110.1 4
17.3 odd 16 289.2.a.f.1.3 4
17.4 even 4 17.2.d.a.15.1 yes 4
17.5 odd 16 289.2.b.b.288.1 4
17.6 odd 16 289.2.c.c.38.3 8
17.7 odd 16 289.2.c.c.251.2 8
17.8 even 8 289.2.d.c.179.1 4
17.9 even 8 inner 289.2.d.b.179.1 4
17.10 odd 16 289.2.c.c.251.1 8
17.11 odd 16 289.2.c.c.38.4 8
17.12 odd 16 289.2.b.b.288.2 4
17.13 even 4 289.2.d.a.134.1 4
17.14 odd 16 289.2.a.f.1.4 4
17.15 even 8 17.2.d.a.8.1 4
17.16 even 2 289.2.d.c.155.1 4
51.14 even 16 2601.2.a.bb.1.2 4
51.20 even 16 2601.2.a.bb.1.1 4
51.32 odd 8 153.2.l.c.127.1 4
51.38 odd 4 153.2.l.c.100.1 4
68.3 even 16 4624.2.a.bp.1.3 4
68.15 odd 8 272.2.v.d.161.1 4
68.31 even 16 4624.2.a.bp.1.2 4
68.55 odd 4 272.2.v.d.49.1 4
85.4 even 4 425.2.m.a.151.1 4
85.14 odd 16 7225.2.a.u.1.1 4
85.32 odd 8 425.2.n.a.399.1 4
85.38 odd 4 425.2.n.a.49.1 4
85.49 even 8 425.2.m.a.76.1 4
85.54 odd 16 7225.2.a.u.1.2 4
85.72 odd 4 425.2.n.b.49.1 4
85.83 odd 8 425.2.n.b.399.1 4
119.4 even 12 833.2.v.b.814.1 8
119.32 even 24 833.2.v.b.569.1 8
119.38 odd 12 833.2.v.a.814.1 8
119.55 odd 4 833.2.l.a.491.1 4
119.66 odd 24 833.2.v.a.569.1 8
119.72 even 12 833.2.v.b.508.1 8
119.83 odd 8 833.2.l.a.246.1 4
119.89 odd 12 833.2.v.a.508.1 8
119.100 even 24 833.2.v.b.263.1 8
119.117 odd 24 833.2.v.a.263.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.8.1 4 17.15 even 8
17.2.d.a.15.1 yes 4 17.4 even 4
153.2.l.c.100.1 4 51.38 odd 4
153.2.l.c.127.1 4 51.32 odd 8
272.2.v.d.49.1 4 68.55 odd 4
272.2.v.d.161.1 4 68.15 odd 8
289.2.a.f.1.3 4 17.3 odd 16
289.2.a.f.1.4 4 17.14 odd 16
289.2.b.b.288.1 4 17.5 odd 16
289.2.b.b.288.2 4 17.12 odd 16
289.2.c.c.38.3 8 17.6 odd 16
289.2.c.c.38.4 8 17.11 odd 16
289.2.c.c.251.1 8 17.10 odd 16
289.2.c.c.251.2 8 17.7 odd 16
289.2.d.a.110.1 4 17.2 even 8
289.2.d.a.134.1 4 17.13 even 4
289.2.d.b.155.1 4 1.1 even 1 trivial
289.2.d.b.179.1 4 17.9 even 8 inner
289.2.d.c.155.1 4 17.16 even 2
289.2.d.c.179.1 4 17.8 even 8
425.2.m.a.76.1 4 85.49 even 8
425.2.m.a.151.1 4 85.4 even 4
425.2.n.a.49.1 4 85.38 odd 4
425.2.n.a.399.1 4 85.32 odd 8
425.2.n.b.49.1 4 85.72 odd 4
425.2.n.b.399.1 4 85.83 odd 8
833.2.l.a.246.1 4 119.83 odd 8
833.2.l.a.491.1 4 119.55 odd 4
833.2.v.a.263.1 8 119.117 odd 24
833.2.v.a.508.1 8 119.89 odd 12
833.2.v.a.569.1 8 119.66 odd 24
833.2.v.a.814.1 8 119.38 odd 12
833.2.v.b.263.1 8 119.100 even 24
833.2.v.b.508.1 8 119.72 even 12
833.2.v.b.569.1 8 119.32 even 24
833.2.v.b.814.1 8 119.4 even 12
2601.2.a.bb.1.1 4 51.20 even 16
2601.2.a.bb.1.2 4 51.14 even 16
4624.2.a.bp.1.2 4 68.31 even 16
4624.2.a.bp.1.3 4 68.3 even 16
7225.2.a.u.1.1 4 85.14 odd 16
7225.2.a.u.1.2 4 85.54 odd 16