Properties

Label 8-2883e4-1.1-c0e4-0-0
Degree $8$
Conductor $6.908\times 10^{13}$
Sign $1$
Analytic cond. $4.28555$
Root an. cond. $1.19950$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4-s − 2·7-s − 12-s + 2·13-s − 2·19-s − 2·21-s + 4·25-s + 2·28-s + 2·37-s + 2·39-s − 3·43-s + 49-s − 2·52-s − 2·57-s + 2·61-s − 2·67-s + 2·73-s + 4·75-s + 2·76-s − 3·79-s + 2·84-s − 4·91-s + 3·97-s − 4·100-s + 3·103-s + 3·109-s + ⋯
L(s)  = 1  + 3-s − 4-s − 2·7-s − 12-s + 2·13-s − 2·19-s − 2·21-s + 4·25-s + 2·28-s + 2·37-s + 2·39-s − 3·43-s + 49-s − 2·52-s − 2·57-s + 2·61-s − 2·67-s + 2·73-s + 4·75-s + 2·76-s − 3·79-s + 2·84-s − 4·91-s + 3·97-s − 4·100-s + 3·103-s + 3·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 31^{8}\)
Sign: $1$
Analytic conductor: \(4.28555\)
Root analytic conductor: \(1.19950\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 31^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.123191507\)
\(L(\frac12)\) \(\approx\) \(1.123191507\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
31 \( 1 \)
good2$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
7$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
11$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
13$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
23$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
29$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
37$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
41$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
43$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
47$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
53$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
61$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
67$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
71$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
73$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
79$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
83$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
89$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
97$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54028498103758627248048803055, −6.19887662103047928379775510811, −6.12287104031861356684574126113, −6.07327522565378431719711089833, −5.61826948104918245409595034329, −5.22892413281692106010842298341, −5.18718273278921929125291003725, −5.00928971691447017659427454585, −4.60738945026192425036822318059, −4.48534144409304495532561113064, −4.31713266192512719762584494943, −4.25542711150988847422608806160, −3.80445639997988247777380047914, −3.49493740267153850486265591929, −3.26674913046357037078758880757, −3.26276688704870715559109135092, −3.25276429686463975462586033855, −2.83608918439457315916956941846, −2.51894197072541826364369296703, −2.34816443316003368905267833315, −2.01638165915840321465968498349, −1.67458870604117024325901839506, −1.16743459697400340898597802469, −0.984865134317719784856070316227, −0.49530624874120500667433297763, 0.49530624874120500667433297763, 0.984865134317719784856070316227, 1.16743459697400340898597802469, 1.67458870604117024325901839506, 2.01638165915840321465968498349, 2.34816443316003368905267833315, 2.51894197072541826364369296703, 2.83608918439457315916956941846, 3.25276429686463975462586033855, 3.26276688704870715559109135092, 3.26674913046357037078758880757, 3.49493740267153850486265591929, 3.80445639997988247777380047914, 4.25542711150988847422608806160, 4.31713266192512719762584494943, 4.48534144409304495532561113064, 4.60738945026192425036822318059, 5.00928971691447017659427454585, 5.18718273278921929125291003725, 5.22892413281692106010842298341, 5.61826948104918245409595034329, 6.07327522565378431719711089833, 6.12287104031861356684574126113, 6.19887662103047928379775510811, 6.54028498103758627248048803055

Graph of the $Z$-function along the critical line