Properties

Label 2883.1.l.b
Level $2883$
Weight $1$
Character orbit 2883.l
Analytic conductor $1.439$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,1,Mod(374,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.374"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2883.l (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,-1,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.43880443142\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.8311689.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10}^{3} q^{3} + \zeta_{10}^{4} q^{4} + (\zeta_{10}^{2} - \zeta_{10}) q^{7} - \zeta_{10} q^{9} - \zeta_{10}^{2} q^{12} + ( - \zeta_{10}^{4} - \zeta_{10}^{2}) q^{13} - \zeta_{10}^{3} q^{16} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{19} + \cdots + ( - \zeta_{10}^{3} + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - q^{4} - 2 q^{7} - q^{9} + q^{12} + 2 q^{13} - q^{16} - 2 q^{19} - 3 q^{21} + 4 q^{25} + q^{27} + 3 q^{28} + 4 q^{36} + 2 q^{37} + 3 q^{39} - 3 q^{43} + q^{48} - 3 q^{49} + 2 q^{52}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2883\mathbb{Z}\right)^\times\).

\(n\) \(962\) \(964\)
\(\chi(n)\) \(-1\) \(-\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
374.1
−0.309017 + 0.951057i
−0.309017 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
0 0.809017 0.587785i 0.309017 + 0.951057i 0 0 −0.500000 1.53884i 0 0.309017 0.951057i 0
1349.1 0 0.809017 + 0.587785i 0.309017 0.951057i 0 0 −0.500000 + 1.53884i 0 0.309017 + 0.951057i 0
1589.1 0 −0.309017 0.951057i −0.809017 0.587785i 0 0 −0.500000 0.363271i 0 −0.809017 + 0.587785i 0
2453.1 0 −0.309017 + 0.951057i −0.809017 + 0.587785i 0 0 −0.500000 + 0.363271i 0 −0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
31.d even 5 1 inner
93.l odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2883.1.l.b 4
3.b odd 2 1 CM 2883.1.l.b 4
31.b odd 2 1 93.1.l.a 4
31.c even 3 2 2883.1.o.b 8
31.d even 5 1 2883.1.b.a 2
31.d even 5 1 inner 2883.1.l.b 4
31.d even 5 2 2883.1.l.c 4
31.e odd 6 2 2883.1.o.d 8
31.f odd 10 1 93.1.l.a 4
31.f odd 10 1 2883.1.b.b 2
31.f odd 10 2 2883.1.l.a 4
31.g even 15 2 2883.1.h.b 4
31.g even 15 4 2883.1.o.a 8
31.g even 15 2 2883.1.o.b 8
31.h odd 30 2 2883.1.h.a 4
31.h odd 30 4 2883.1.o.c 8
31.h odd 30 2 2883.1.o.d 8
93.c even 2 1 93.1.l.a 4
93.g even 6 2 2883.1.o.d 8
93.h odd 6 2 2883.1.o.b 8
93.k even 10 1 93.1.l.a 4
93.k even 10 1 2883.1.b.b 2
93.k even 10 2 2883.1.l.a 4
93.l odd 10 1 2883.1.b.a 2
93.l odd 10 1 inner 2883.1.l.b 4
93.l odd 10 2 2883.1.l.c 4
93.o odd 30 2 2883.1.h.b 4
93.o odd 30 4 2883.1.o.a 8
93.o odd 30 2 2883.1.o.b 8
93.p even 30 2 2883.1.h.a 4
93.p even 30 4 2883.1.o.c 8
93.p even 30 2 2883.1.o.d 8
124.d even 2 1 1488.1.br.a 4
124.j even 10 1 1488.1.br.a 4
155.c odd 2 1 2325.1.ca.a 4
155.f even 4 2 2325.1.bq.a 8
155.m odd 10 1 2325.1.ca.a 4
155.r even 20 2 2325.1.bq.a 8
279.m odd 6 2 2511.1.bu.a 8
279.s even 6 2 2511.1.bu.a 8
279.bg even 30 2 2511.1.bu.a 8
279.bj odd 30 2 2511.1.bu.a 8
372.b odd 2 1 1488.1.br.a 4
372.u odd 10 1 1488.1.br.a 4
465.g even 2 1 2325.1.ca.a 4
465.m odd 4 2 2325.1.bq.a 8
465.w even 10 1 2325.1.ca.a 4
465.bh odd 20 2 2325.1.bq.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
93.1.l.a 4 31.b odd 2 1
93.1.l.a 4 31.f odd 10 1
93.1.l.a 4 93.c even 2 1
93.1.l.a 4 93.k even 10 1
1488.1.br.a 4 124.d even 2 1
1488.1.br.a 4 124.j even 10 1
1488.1.br.a 4 372.b odd 2 1
1488.1.br.a 4 372.u odd 10 1
2325.1.bq.a 8 155.f even 4 2
2325.1.bq.a 8 155.r even 20 2
2325.1.bq.a 8 465.m odd 4 2
2325.1.bq.a 8 465.bh odd 20 2
2325.1.ca.a 4 155.c odd 2 1
2325.1.ca.a 4 155.m odd 10 1
2325.1.ca.a 4 465.g even 2 1
2325.1.ca.a 4 465.w even 10 1
2511.1.bu.a 8 279.m odd 6 2
2511.1.bu.a 8 279.s even 6 2
2511.1.bu.a 8 279.bg even 30 2
2511.1.bu.a 8 279.bj odd 30 2
2883.1.b.a 2 31.d even 5 1
2883.1.b.a 2 93.l odd 10 1
2883.1.b.b 2 31.f odd 10 1
2883.1.b.b 2 93.k even 10 1
2883.1.h.a 4 31.h odd 30 2
2883.1.h.a 4 93.p even 30 2
2883.1.h.b 4 31.g even 15 2
2883.1.h.b 4 93.o odd 30 2
2883.1.l.a 4 31.f odd 10 2
2883.1.l.a 4 93.k even 10 2
2883.1.l.b 4 1.a even 1 1 trivial
2883.1.l.b 4 3.b odd 2 1 CM
2883.1.l.b 4 31.d even 5 1 inner
2883.1.l.b 4 93.l odd 10 1 inner
2883.1.l.c 4 31.d even 5 2
2883.1.l.c 4 93.l odd 10 2
2883.1.o.a 8 31.g even 15 4
2883.1.o.a 8 93.o odd 30 4
2883.1.o.b 8 31.c even 3 2
2883.1.o.b 8 31.g even 15 2
2883.1.o.b 8 93.h odd 6 2
2883.1.o.b 8 93.o odd 30 2
2883.1.o.c 8 31.h odd 30 4
2883.1.o.c 8 93.p even 30 4
2883.1.o.d 8 31.e odd 6 2
2883.1.o.d 8 31.h odd 30 2
2883.1.o.d 8 93.g even 6 2
2883.1.o.d 8 93.p even 30 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2883, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{7}^{4} + 2T_{7}^{3} + 4T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display
\( T_{13}^{4} - 2T_{13}^{3} + 4T_{13}^{2} - 3T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less