L(s) = 1 | + i·2-s + (−0.258 + 0.965i)3-s + (0.866 + 0.5i)5-s + (−0.965 − 0.258i)6-s + (0.5 + 0.866i)7-s + i·8-s + (−0.866 − 0.499i)9-s + (−0.5 + 0.866i)10-s + (−0.866 + 0.5i)14-s + (−0.707 + 0.707i)15-s − 16-s + (−1.22 + 0.707i)17-s + (0.499 − 0.866i)18-s + (−0.5 − 0.866i)19-s + (−0.965 + 0.258i)21-s + ⋯ |
L(s) = 1 | + i·2-s + (−0.258 + 0.965i)3-s + (0.866 + 0.5i)5-s + (−0.965 − 0.258i)6-s + (0.5 + 0.866i)7-s + i·8-s + (−0.866 − 0.499i)9-s + (−0.5 + 0.866i)10-s + (−0.866 + 0.5i)14-s + (−0.707 + 0.707i)15-s − 16-s + (−1.22 + 0.707i)17-s + (0.499 − 0.866i)18-s + (−0.5 − 0.866i)19-s + (−0.965 + 0.258i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 + 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 + 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.400268327\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.400268327\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.258 - 0.965i)T \) |
| 31 | \( 1 \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.226232116460775402095878188041, −8.581814102962874847517606022213, −7.959133448924433574966136967416, −6.76905504669273908142330431204, −6.17664168577392467627317122779, −5.77943994071841724689114172487, −4.89809493016854334306431979543, −4.19694240114209942550036228802, −2.63149506329882584418219708153, −2.21283053463287959866351838670,
0.880612656003352548568841292378, 1.79319824322268227631990662280, 2.34473755578949472059345903554, 3.57219628387926544467053978881, 4.58835669008945153929905460699, 5.47505245590347715810511696144, 6.36754816570023133241645531525, 7.03888987813915937850200316505, 7.66406103399677022412691830905, 8.731857967598501643418906162838