Properties

Label 2883.1.h.c.521.3
Level $2883$
Weight $1$
Character 2883.521
Analytic conductor $1.439$
Analytic rank $0$
Dimension $8$
Projective image $S_{4}$
CM/RM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,1,Mod(521,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.521"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2883.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.43880443142\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.268119.1

Embedding invariants

Embedding label 521.3
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2883.521
Dual form 2883.1.h.c.1400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-0.258819 + 0.965926i) q^{3} +(0.866025 + 0.500000i) q^{5} +(-0.965926 - 0.258819i) q^{6} +(0.500000 + 0.866025i) q^{7} +1.00000i q^{8} +(-0.866025 - 0.500000i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(-0.866025 + 0.500000i) q^{14} +(-0.707107 + 0.707107i) q^{15} -1.00000 q^{16} +(-1.22474 + 0.707107i) q^{17} +(0.500000 - 0.866025i) q^{18} +(-0.500000 - 0.866025i) q^{19} +(-0.965926 + 0.258819i) q^{21} +(-0.965926 - 0.258819i) q^{24} +(0.707107 - 0.707107i) q^{27} -1.41421i q^{29} +(-0.707107 - 0.707107i) q^{30} +(-0.707107 - 1.22474i) q^{34} +1.00000i q^{35} +(0.866025 - 0.500000i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(0.866025 + 0.500000i) q^{41} +(-0.258819 - 0.965926i) q^{42} +(0.707107 + 1.22474i) q^{43} +(-0.500000 - 0.866025i) q^{45} +(0.258819 - 0.965926i) q^{48} +(-0.366025 - 1.36603i) q^{51} +(0.707107 + 0.707107i) q^{54} +(-0.866025 + 0.500000i) q^{56} +(0.965926 - 0.258819i) q^{57} +1.41421 q^{58} +(-0.866025 + 0.500000i) q^{59} +1.41421 q^{61} -1.00000i q^{63} -1.00000 q^{64} -1.00000 q^{70} +(0.866025 + 0.500000i) q^{71} +(0.500000 - 0.866025i) q^{72} +(-0.866025 - 0.500000i) q^{80} +(0.500000 + 0.866025i) q^{81} +(-0.500000 + 0.866025i) q^{82} +(1.22474 + 0.707107i) q^{83} -1.41421 q^{85} +(-1.22474 + 0.707107i) q^{86} +(1.36603 + 0.366025i) q^{87} +(0.866025 - 0.500000i) q^{90} -1.00000i q^{95} -1.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 4 q^{10} - 8 q^{16} + 4 q^{18} - 4 q^{19} - 4 q^{40} - 4 q^{45} + 4 q^{51} - 8 q^{64} - 8 q^{70} + 4 q^{72} + 4 q^{81} - 4 q^{82} + 4 q^{87} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2883\mathbb{Z}\right)^\times\).

\(n\) \(962\) \(964\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(4\) 0 0
\(5\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(6\) −0.965926 0.258819i −0.965926 0.258819i
\(7\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 1.00000i 1.00000i
\(9\) −0.866025 0.500000i −0.866025 0.500000i
\(10\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(15\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(16\) −1.00000 −1.00000
\(17\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(18\) 0.500000 0.866025i 0.500000 0.866025i
\(19\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −0.965926 0.258819i −0.965926 0.258819i
\(25\) 0 0
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.707107 0.707107i
\(28\) 0 0
\(29\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(30\) −0.707107 0.707107i −0.707107 0.707107i
\(31\) 0 0
\(32\) 0 0
\(33\) 0 0
\(34\) −0.707107 1.22474i −0.707107 1.22474i
\(35\) 1.00000i 1.00000i
\(36\) 0 0
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 0.866025 0.500000i 0.866025 0.500000i
\(39\) 0 0
\(40\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(41\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(42\) −0.258819 0.965926i −0.258819 0.965926i
\(43\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(44\) 0 0
\(45\) −0.500000 0.866025i −0.500000 0.866025i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0.258819 0.965926i 0.258819 0.965926i
\(49\) 0 0
\(50\) 0 0
\(51\) −0.366025 1.36603i −0.366025 1.36603i
\(52\) 0 0
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(55\) 0 0
\(56\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(57\) 0.965926 0.258819i 0.965926 0.258819i
\(58\) 1.41421 1.41421
\(59\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(62\) 0 0
\(63\) 1.00000i 1.00000i
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −1.00000 −1.00000
\(71\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(72\) 0.500000 0.866025i 0.500000 0.866025i
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) −0.866025 0.500000i −0.866025 0.500000i
\(81\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(82\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(83\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(84\) 0 0
\(85\) −1.41421 −1.41421
\(86\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(87\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0.866025 0.500000i 0.866025 0.500000i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000i 1.00000i
\(96\) 0 0
\(97\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(102\) 1.36603 0.366025i 1.36603 0.366025i
\(103\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −0.965926 0.258819i −0.965926 0.258819i
\(106\) 0 0
\(107\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0 0
\(109\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.500000 0.866025i −0.500000 0.866025i
\(113\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(114\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.500000 0.866025i −0.500000 0.866025i
\(119\) −1.22474 0.707107i −1.22474 0.707107i
\(120\) −0.707107 0.707107i −0.707107 0.707107i
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) 1.41421i 1.41421i
\(123\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) 1.00000 1.00000
\(127\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(128\) 1.00000i 1.00000i
\(129\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0.500000 0.866025i 0.500000 0.866025i
\(134\) 0 0
\(135\) 0.965926 0.258819i 0.965926 0.258819i
\(136\) −0.707107 1.22474i −0.707107 1.22474i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(143\) 0 0
\(144\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(145\) 0.707107 1.22474i 0.707107 1.22474i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(152\) 0.866025 0.500000i 0.866025 0.500000i
\(153\) 1.41421 1.41421
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(163\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(167\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(168\) −0.258819 0.965926i −0.258819 0.965926i
\(169\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(170\) 1.41421i 1.41421i
\(171\) 1.00000i 1.00000i
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(175\) 0 0
\(176\) 0 0
\(177\) −0.258819 0.965926i −0.258819 0.965926i
\(178\) 0 0
\(179\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(180\) 0 0
\(181\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(182\) 0 0
\(183\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(190\) 1.00000 1.00000
\(191\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0.258819 0.965926i 0.258819 0.965926i
\(193\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(194\) 1.00000i 1.00000i
\(195\) 0 0
\(196\) 0 0
\(197\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.00000 1.00000
\(203\) 1.22474 0.707107i 1.22474 0.707107i
\(204\) 0 0
\(205\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(206\) −0.866025 0.500000i −0.866025 0.500000i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0.258819 0.965926i 0.258819 0.965926i
\(211\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(214\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(215\) 1.41421i 1.41421i
\(216\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(217\) 0 0
\(218\) 1.00000i 1.00000i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.41421 1.41421
\(233\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.707107 1.22474i 0.707107 1.22474i
\(239\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0.707107 0.707107i 0.707107 0.707107i
\(241\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) 0.866025 0.500000i 0.866025 0.500000i
\(243\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.707107 0.707107i −0.707107 0.707107i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(250\) 1.00000 1.00000
\(251\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.366025 1.36603i 0.366025 1.36603i
\(256\) 0 0
\(257\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) −0.366025 1.36603i −0.366025 1.36603i
\(259\) 0 0
\(260\) 0 0
\(261\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(262\) 0 0
\(263\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(267\) 0 0
\(268\) 0 0
\(269\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(270\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 1.22474 0.707107i 1.22474 0.707107i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −1.00000 −1.00000
\(281\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(286\) 0 0
\(287\) 1.00000i 1.00000i
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.500000 0.866025i
\(290\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(291\) 0.258819 0.965926i 0.258819 0.965926i
\(292\) 0 0
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) −1.00000 −1.00000
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(302\) 1.41421i 1.41421i
\(303\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(304\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(305\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(306\) 1.41421i 1.41421i
\(307\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) −0.707107 0.707107i −0.707107 0.707107i
\(310\) 0 0
\(311\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(314\) 1.00000i 1.00000i
\(315\) 0.500000 0.866025i 0.500000 0.866025i
\(316\) 0 0
\(317\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.866025 0.500000i −0.866025 0.500000i
\(321\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(322\) 0 0
\(323\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(324\) 0 0
\(325\) 0 0
\(326\) 1.00000i 1.00000i
\(327\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(328\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(335\) 0 0
\(336\) 0.965926 0.258819i 0.965926 0.258819i
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(339\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(340\) 0 0
\(341\) 0 0
\(342\) −1.00000 −1.00000
\(343\) 1.00000 1.00000
\(344\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(354\) 0.965926 0.258819i 0.965926 0.258819i
\(355\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(356\) 0 0
\(357\) 1.00000 1.00000i 1.00000 1.00000i
\(358\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(359\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(360\) 0.866025 0.500000i 0.866025 0.500000i
\(361\) 0 0
\(362\) −1.22474 0.707107i −1.22474 0.707107i
\(363\) 0.965926 0.258819i 0.965926 0.258819i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.36603 0.366025i −1.36603 0.366025i
\(367\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(368\) 0 0
\(369\) −0.500000 0.866025i −0.500000 0.866025i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(376\) 0 0
\(377\) 0 0
\(378\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(379\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.500000 0.866025i 0.500000 0.866025i
\(383\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(384\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(385\) 0 0
\(386\) 0.866025 0.500000i 0.866025 0.500000i
\(387\) 1.41421i 1.41421i
\(388\) 0 0
\(389\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0.707107 1.22474i 0.707107 1.22474i
\(395\) 0 0
\(396\) 0 0
\(397\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(400\) 0 0
\(401\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000i 1.00000i
\(406\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(407\) 0 0
\(408\) 1.36603 0.366025i 1.36603 0.366025i
\(409\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(411\) 0 0
\(412\) 0 0
\(413\) −0.866025 0.500000i −0.866025 0.500000i
\(414\) 0 0
\(415\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(422\) 0.866025 0.500000i 0.866025 0.500000i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −0.707107 0.707107i −0.707107 0.707107i
\(427\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(428\) 0 0
\(429\) 0 0
\(430\) −1.41421 −1.41421
\(431\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(432\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(447\) 0 0
\(448\) −0.500000 0.866025i −0.500000 0.866025i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.366025 1.36603i 0.366025 1.36603i
\(454\) 0 0
\(455\) 0 0
\(456\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(457\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 0 0
\(459\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(460\) 0 0
\(461\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(462\) 0 0
\(463\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 1.41421i 1.41421i
\(465\) 0 0
\(466\) 1.00000 1.00000
\(467\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.258819 0.965926i 0.258819 0.965926i
\(472\) −0.500000 0.866025i −0.500000 0.866025i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.866025 0.500000i −0.866025 0.500000i
\(486\) −0.258819 0.965926i −0.258819 0.965926i
\(487\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 1.41421i 1.41421i
\(489\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(490\) 0 0
\(491\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(492\) 0 0
\(493\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.00000i 1.00000i
\(498\) −1.00000 1.00000i −1.00000 1.00000i
\(499\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(500\) 0 0
\(501\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(502\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(503\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(504\) 1.00000 1.00000
\(505\) 0.500000 0.866025i 0.500000 0.866025i
\(506\) 0 0
\(507\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(508\) 0 0
\(509\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(510\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) −0.965926 0.258819i −0.965926 0.258819i
\(514\) 0.500000 0.866025i 0.500000 0.866025i
\(515\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) −1.22474 0.707107i −1.22474 0.707107i
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −1.41421 −1.41421
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 1.00000 1.00000
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.00000 1.00000
\(536\) 0 0
\(537\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(538\) 0.707107 1.22474i 0.707107 1.22474i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) −1.00000 1.00000i −1.00000 1.00000i
\(544\) 0 0
\(545\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(546\) 0 0
\(547\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −1.22474 0.707107i −1.22474 0.707107i
\(550\) 0 0
\(551\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.00000i 1.00000i
\(561\) 0 0
\(562\) 1.00000 1.00000
\(563\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(566\) 0 0
\(567\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(568\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(571\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(572\) 0 0
\(573\) 0.707107 0.707107i 0.707107 0.707107i
\(574\) −1.00000 −1.00000
\(575\) 0 0
\(576\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(577\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(578\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(579\) 0.965926 0.258819i 0.965926 0.258819i
\(580\) 0 0
\(581\) 1.41421i 1.41421i
\(582\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 1.00000i 1.00000i
\(591\) 1.00000 1.00000i 1.00000 1.00000i
\(592\) 0 0
\(593\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) −0.707107 1.22474i −0.707107 1.22474i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(602\) −1.22474 0.707107i −1.22474 0.707107i
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000i 1.00000i
\(606\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(607\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(608\) 0 0
\(609\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(610\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(611\) 0 0
\(612\) 0 0
\(613\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(614\) 0.866025 0.500000i 0.866025 0.500000i
\(615\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(616\) 0 0
\(617\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0.707107 0.707107i 0.707107 0.707107i
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.00000 −1.00000
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.500000 0.866025i
\(626\) 1.22474 0.707107i 1.22474 0.707107i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(631\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(632\) 0 0
\(633\) 0.965926 0.258819i 0.965926 0.258819i
\(634\) −0.500000 0.866025i −0.500000 0.866025i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.500000 0.866025i −0.500000 0.866025i
\(640\) 0.500000 0.866025i 0.500000 0.866025i
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(643\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) −1.36603 0.366025i −1.36603 0.366025i
\(646\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(647\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(648\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) −0.965926 0.258819i −0.965926 0.258819i
\(655\) 0 0
\(656\) −0.866025 0.500000i −0.866025 0.500000i
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(660\) 0 0
\(661\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(662\) −1.22474 0.707107i −1.22474 0.707107i
\(663\) 0 0
\(664\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(665\) 0.866025 0.500000i 0.866025 0.500000i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) −0.707107 0.707107i −0.707107 0.707107i
\(679\) −0.500000 0.866025i −0.500000 0.866025i
\(680\) 1.41421i 1.41421i
\(681\) 0 0
\(682\) 0 0
\(683\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000i 1.00000i
\(687\) 0 0
\(688\) −0.707107 1.22474i −0.707107 1.22474i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(697\) −1.41421 −1.41421
\(698\) 0 0
\(699\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(700\) 0 0
\(701\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.707107 1.22474i −0.707107 1.22474i
\(707\) 0.866025 0.500000i 0.866025 0.500000i
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(721\) −1.00000 −1.00000
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(727\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 0 0
\(731\) −1.73205 1.00000i −1.73205 1.00000i
\(732\) 0 0
\(733\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(734\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0.866025 0.500000i 0.866025 0.500000i
\(739\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.00000i 1.00000i
\(747\) −0.707107 1.22474i −0.707107 1.22474i
\(748\) 0 0
\(749\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(750\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(751\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(754\) 0 0
\(755\) −1.22474 0.707107i −1.22474 0.707107i
\(756\) 0 0
\(757\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 1.00000 1.00000
\(761\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(764\) 0 0
\(765\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(766\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(767\) 0 0
\(768\) 0 0
\(769\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0.707107 0.707107i 0.707107 0.707107i
\(772\) 0 0
\(773\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 1.41421 1.41421
\(775\) 0 0
\(776\) 1.00000i 1.00000i
\(777\) 0 0
\(778\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(779\) 1.00000i 1.00000i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.00000 1.00000i −1.00000 1.00000i
\(784\) 0 0
\(785\) −0.866025 0.500000i −0.866025 0.500000i
\(786\) 0 0
\(787\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) 0 0
\(789\) −1.36603 0.366025i −1.36603 0.366025i
\(790\) 0 0
\(791\) 1.00000i 1.00000i
\(792\) 0 0
\(793\) 0 0
\(794\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 1.41421 1.41421
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.00000 1.00000i 1.00000 1.00000i
\(808\) 1.00000 1.00000
\(809\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(810\) −1.00000 −1.00000
\(811\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(816\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(817\) 0.707107 1.22474i 0.707107 1.22474i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(824\) −0.866025 0.500000i −0.866025 0.500000i
\(825\) 0 0
\(826\) 0.500000 0.866025i 0.500000 0.866025i
\(827\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(828\) 0 0
\(829\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(830\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.41421 1.41421
\(836\) 0 0
\(837\) 0 0
\(838\) −1.00000 −1.00000
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0.258819 0.965926i 0.258819 0.965926i
\(841\) −1.00000 −1.00000
\(842\) −0.866025 0.500000i −0.866025 0.500000i
\(843\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(844\) 0 0
\(845\) 1.00000i 1.00000i
\(846\) 0 0
\(847\) 0.500000 0.866025i 0.500000 0.866025i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(855\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(856\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(860\) 0 0
\(861\) −0.965926 0.258819i −0.965926 0.258819i
\(862\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(868\) 0 0
\(869\) 0 0
\(870\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(871\) 0 0
\(872\) 1.00000i 1.00000i
\(873\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(874\) 0 0
\(875\) 0.866025 0.500000i 0.866025 0.500000i
\(876\) 0 0
\(877\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(878\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0.258819 0.965926i 0.258819 0.965926i
\(886\) 0.500000 0.866025i 0.500000 0.866025i
\(887\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 1.41421 1.41421
\(896\) 0.866025 0.500000i 0.866025 0.500000i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −1.00000 1.00000i −1.00000 1.00000i
\(904\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(905\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(906\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(907\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0 0
\(909\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(910\) 0 0
\(911\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(912\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(913\) 0 0
\(914\) 1.41421i 1.41421i
\(915\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(916\) 0 0
\(917\) 0 0
\(918\) −1.36603 0.366025i −1.36603 0.366025i
\(919\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) 0 0
\(921\) 0.965926 0.258819i 0.965926 0.258819i
\(922\) −1.41421 −1.41421
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 1.41421i 1.41421i
\(927\) 0.866025 0.500000i 0.866025 0.500000i
\(928\) 0 0
\(929\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −0.965926 0.258819i −0.965926 0.258819i
\(934\) −1.00000 −1.00000
\(935\) 0 0
\(936\) 0 0
\(937\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(938\) 0 0
\(939\) 1.36603 0.366025i 1.36603 0.366025i
\(940\) 0 0
\(941\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(942\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(943\) 0 0
\(944\) 0.866025 0.500000i 0.866025 0.500000i
\(945\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(946\) 0 0
\(947\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −0.258819 0.965926i −0.258819 0.965926i
\(952\) 0.707107 1.22474i 0.707107 1.22474i
\(953\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(954\) 0 0
\(955\) −0.500000 0.866025i −0.500000 0.866025i
\(956\) 0 0
\(957\) 0 0
\(958\) −0.500000 0.866025i −0.500000 0.866025i
\(959\) 0 0
\(960\) 0.707107 0.707107i 0.707107 0.707107i
\(961\) 0 0
\(962\) 0 0
\(963\) −1.00000 −1.00000
\(964\) 0 0
\(965\) 1.00000i 1.00000i
\(966\) 0 0
\(967\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(968\) 0.866025 0.500000i 0.866025 0.500000i
\(969\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(970\) 0.500000 0.866025i 0.500000 0.866025i
\(971\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −1.41421 −1.41421
\(977\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) −0.965926 0.258819i −0.965926 0.258819i
\(979\) 0 0
\(980\) 0 0
\(981\) −0.866025 0.500000i −0.866025 0.500000i
\(982\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) −0.707107 0.707107i −0.707107 0.707107i
\(985\) −0.707107 1.22474i −0.707107 1.22474i
\(986\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(992\) 0 0
\(993\) −1.00000 1.00000i −1.00000 1.00000i
\(994\) −1.00000 −1.00000
\(995\) 0 0
\(996\) 0 0
\(997\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(998\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2883.1.h.c.521.3 8
3.2 odd 2 inner 2883.1.h.c.521.2 8
31.2 even 5 2883.1.o.e.1805.2 32
31.3 odd 30 2883.1.l.d.1589.3 16
31.4 even 5 2883.1.o.e.338.2 32
31.5 even 3 inner 2883.1.h.c.1400.4 8
31.6 odd 6 2883.1.b.c.962.4 yes 4
31.7 even 15 2883.1.l.d.1349.2 16
31.8 even 5 2883.1.o.e.2654.3 32
31.9 even 15 2883.1.o.e.2738.3 32
31.10 even 15 2883.1.o.e.1508.2 32
31.11 odd 30 2883.1.o.e.1196.2 32
31.12 odd 30 2883.1.l.d.2453.2 16
31.13 odd 30 2883.1.o.e.2768.3 32
31.14 even 15 2883.1.l.d.374.4 16
31.15 odd 10 2883.1.o.e.1409.4 32
31.16 even 5 2883.1.o.e.1409.3 32
31.17 odd 30 2883.1.l.d.374.3 16
31.18 even 15 2883.1.o.e.2768.4 32
31.19 even 15 2883.1.l.d.2453.1 16
31.20 even 15 2883.1.o.e.1196.1 32
31.21 odd 30 2883.1.o.e.1508.1 32
31.22 odd 30 2883.1.o.e.2738.4 32
31.23 odd 10 2883.1.o.e.2654.4 32
31.24 odd 30 2883.1.l.d.1349.1 16
31.25 even 3 2883.1.b.c.962.3 yes 4
31.26 odd 6 inner 2883.1.h.c.1400.3 8
31.27 odd 10 2883.1.o.e.338.1 32
31.28 even 15 2883.1.l.d.1589.4 16
31.29 odd 10 2883.1.o.e.1805.1 32
31.30 odd 2 inner 2883.1.h.c.521.4 8
93.2 odd 10 2883.1.o.e.1805.4 32
93.5 odd 6 inner 2883.1.h.c.1400.1 8
93.8 odd 10 2883.1.o.e.2654.1 32
93.11 even 30 2883.1.o.e.1196.4 32
93.14 odd 30 2883.1.l.d.374.2 16
93.17 even 30 2883.1.l.d.374.1 16
93.20 odd 30 2883.1.o.e.1196.3 32
93.23 even 10 2883.1.o.e.2654.2 32
93.26 even 6 inner 2883.1.h.c.1400.2 8
93.29 even 10 2883.1.o.e.1805.3 32
93.35 odd 10 2883.1.o.e.338.3 32
93.38 odd 30 2883.1.l.d.1349.4 16
93.41 odd 30 2883.1.o.e.1508.3 32
93.44 even 30 2883.1.o.e.2768.1 32
93.47 odd 10 2883.1.o.e.1409.2 32
93.50 odd 30 2883.1.l.d.2453.4 16
93.53 even 30 2883.1.o.e.2738.1 32
93.56 odd 6 2883.1.b.c.962.1 4
93.59 odd 30 2883.1.l.d.1589.1 16
93.65 even 30 2883.1.l.d.1589.2 16
93.68 even 6 2883.1.b.c.962.2 yes 4
93.71 odd 30 2883.1.o.e.2738.2 32
93.74 even 30 2883.1.l.d.2453.3 16
93.77 even 10 2883.1.o.e.1409.1 32
93.80 odd 30 2883.1.o.e.2768.2 32
93.83 even 30 2883.1.o.e.1508.4 32
93.86 even 30 2883.1.l.d.1349.3 16
93.89 even 10 2883.1.o.e.338.4 32
93.92 even 2 inner 2883.1.h.c.521.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2883.1.b.c.962.1 4 93.56 odd 6
2883.1.b.c.962.2 yes 4 93.68 even 6
2883.1.b.c.962.3 yes 4 31.25 even 3
2883.1.b.c.962.4 yes 4 31.6 odd 6
2883.1.h.c.521.1 8 93.92 even 2 inner
2883.1.h.c.521.2 8 3.2 odd 2 inner
2883.1.h.c.521.3 8 1.1 even 1 trivial
2883.1.h.c.521.4 8 31.30 odd 2 inner
2883.1.h.c.1400.1 8 93.5 odd 6 inner
2883.1.h.c.1400.2 8 93.26 even 6 inner
2883.1.h.c.1400.3 8 31.26 odd 6 inner
2883.1.h.c.1400.4 8 31.5 even 3 inner
2883.1.l.d.374.1 16 93.17 even 30
2883.1.l.d.374.2 16 93.14 odd 30
2883.1.l.d.374.3 16 31.17 odd 30
2883.1.l.d.374.4 16 31.14 even 15
2883.1.l.d.1349.1 16 31.24 odd 30
2883.1.l.d.1349.2 16 31.7 even 15
2883.1.l.d.1349.3 16 93.86 even 30
2883.1.l.d.1349.4 16 93.38 odd 30
2883.1.l.d.1589.1 16 93.59 odd 30
2883.1.l.d.1589.2 16 93.65 even 30
2883.1.l.d.1589.3 16 31.3 odd 30
2883.1.l.d.1589.4 16 31.28 even 15
2883.1.l.d.2453.1 16 31.19 even 15
2883.1.l.d.2453.2 16 31.12 odd 30
2883.1.l.d.2453.3 16 93.74 even 30
2883.1.l.d.2453.4 16 93.50 odd 30
2883.1.o.e.338.1 32 31.27 odd 10
2883.1.o.e.338.2 32 31.4 even 5
2883.1.o.e.338.3 32 93.35 odd 10
2883.1.o.e.338.4 32 93.89 even 10
2883.1.o.e.1196.1 32 31.20 even 15
2883.1.o.e.1196.2 32 31.11 odd 30
2883.1.o.e.1196.3 32 93.20 odd 30
2883.1.o.e.1196.4 32 93.11 even 30
2883.1.o.e.1409.1 32 93.77 even 10
2883.1.o.e.1409.2 32 93.47 odd 10
2883.1.o.e.1409.3 32 31.16 even 5
2883.1.o.e.1409.4 32 31.15 odd 10
2883.1.o.e.1508.1 32 31.21 odd 30
2883.1.o.e.1508.2 32 31.10 even 15
2883.1.o.e.1508.3 32 93.41 odd 30
2883.1.o.e.1508.4 32 93.83 even 30
2883.1.o.e.1805.1 32 31.29 odd 10
2883.1.o.e.1805.2 32 31.2 even 5
2883.1.o.e.1805.3 32 93.29 even 10
2883.1.o.e.1805.4 32 93.2 odd 10
2883.1.o.e.2654.1 32 93.8 odd 10
2883.1.o.e.2654.2 32 93.23 even 10
2883.1.o.e.2654.3 32 31.8 even 5
2883.1.o.e.2654.4 32 31.23 odd 10
2883.1.o.e.2738.1 32 93.53 even 30
2883.1.o.e.2738.2 32 93.71 odd 30
2883.1.o.e.2738.3 32 31.9 even 15
2883.1.o.e.2738.4 32 31.22 odd 30
2883.1.o.e.2768.1 32 93.44 even 30
2883.1.o.e.2768.2 32 93.80 odd 30
2883.1.o.e.2768.3 32 31.13 odd 30
2883.1.o.e.2768.4 32 31.18 even 15