| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s − i·7-s + 0.999i·8-s + i·9-s + (−0.366 + 0.366i)11-s + (0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.5 + 0.133i)22-s + 1.73i·23-s + (0.866 − 0.499i)28-s + (1.36 + 1.36i)29-s + (−0.866 + 0.499i)32-s + (−0.866 + 0.499i)36-s + (1.36 − 1.36i)37-s + ⋯ |
| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s − i·7-s + 0.999i·8-s + i·9-s + (−0.366 + 0.366i)11-s + (0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.5 + 0.133i)22-s + 1.73i·23-s + (0.866 − 0.499i)28-s + (1.36 + 1.36i)29-s + (−0.866 + 0.499i)32-s + (−0.866 + 0.499i)36-s + (1.36 − 1.36i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.989677663\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.989677663\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + iT \) |
| good | 3 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 - 1.73iT - T^{2} \) |
| 29 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 - iT^{2} \) |
| 67 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 71 | \( 1 + iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 1.73T + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.988764002977549724385397945846, −8.046428366948525250654177460452, −7.46507894828357390024682317877, −7.05150330354819897548032764474, −5.99699205000288326525632930047, −5.18901283686349544914990686685, −4.57525383404448542329885554867, −3.73615586618674469339491882337, −2.81449298263378376416571142765, −1.68554424073358877335743557604,
1.00817359630425136200128940074, 2.57870666444971023486522729110, 2.86507838410438389527075362615, 4.15773104051092303165787506773, 4.72991320994557283054988407035, 5.93749467340088512084600604449, 6.11566569591925571779069975154, 7.00473474712929042127019522326, 8.232152750179858355471482602610, 8.826699893317861364811193468704