sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2800, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,3,0,2]))
pari:[g,chi] = znchar(Mod(2701,2800))
\(\chi_{2800}(1301,\cdot)\)
\(\chi_{2800}(2701,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((351,2101,2577,801)\) → \((1,-i,1,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 2800 }(2701, a) \) |
\(-1\) | \(1\) | \(-i\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(-i\) | \(-1\) | \(i\) | \(i\) | \(-1\) |
sage:chi.jacobi_sum(n)