L(s) = 1 | + (2.48 + 1.80i)2-s + (−3.80 − 1.23i)3-s + (1.69 + 5.20i)4-s + (−7.23 − 9.95i)6-s + (−2.48 − 7.66i)7-s + (−1.40 + 4.30i)8-s + (5.66 + 4.11i)9-s + (−10.8 + 1.67i)11-s − 21.8i·12-s + (−11.3 − 8.25i)13-s + (7.66 − 23.5i)14-s + (6.42 − 4.66i)16-s + (19.6 − 14.2i)17-s + (6.65 + 20.4i)18-s + (−8.02 − 2.60i)19-s + ⋯ |
L(s) = 1 | + (1.24 + 0.904i)2-s + (−1.26 − 0.412i)3-s + (0.422 + 1.30i)4-s + (−1.20 − 1.65i)6-s + (−0.355 − 1.09i)7-s + (−0.175 + 0.538i)8-s + (0.629 + 0.457i)9-s + (−0.988 + 0.152i)11-s − 1.82i·12-s + (−0.873 − 0.634i)13-s + (0.547 − 1.68i)14-s + (0.401 − 0.291i)16-s + (1.15 − 0.839i)17-s + (0.369 + 1.13i)18-s + (−0.422 − 0.137i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.972i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.230 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.914516 - 0.722845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.914516 - 0.722845i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (10.8 - 1.67i)T \) |
good | 2 | \( 1 + (-2.48 - 1.80i)T + (1.23 + 3.80i)T^{2} \) |
| 3 | \( 1 + (3.80 + 1.23i)T + (7.28 + 5.29i)T^{2} \) |
| 7 | \( 1 + (2.48 + 7.66i)T + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (11.3 + 8.25i)T + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-19.6 + 14.2i)T + (89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (8.02 + 2.60i)T + (292. + 212. i)T^{2} \) |
| 23 | \( 1 + 25.3iT - 529T^{2} \) |
| 29 | \( 1 + (34.7 - 11.3i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (-8.38 - 6.08i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (19.2 - 6.26i)T + (1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (-53.1 - 17.2i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 37.2T + 1.84e3T^{2} \) |
| 47 | \( 1 + (81.3 + 26.4i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (32.0 - 44.1i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (18.3 + 56.3i)T + (-2.81e3 + 2.04e3i)T^{2} \) |
| 61 | \( 1 + (-21.5 - 29.7i)T + (-1.14e3 + 3.53e3i)T^{2} \) |
| 67 | \( 1 + 17.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (4.70 - 3.42i)T + (1.55e3 - 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-15.8 - 48.6i)T + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (20.1 - 27.7i)T + (-1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-117. + 85.7i)T + (2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 - 127.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-53.0 + 73.0i)T + (-2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83273649459378326749442172669, −10.65837770394592611965164212820, −9.938104678240778159277754150518, −7.80764322791097486228085824656, −7.18587593644272578272561422172, −6.35132840280352693817811112515, −5.31444175567294275228480810097, −4.73675640659786650790508332625, −3.20650561451757466431989753596, −0.43711175069851998009294121244,
2.12150024876436976546718185274, 3.47791680085500405329234572268, 4.83154810465389661382980285063, 5.52635094350493804785132033754, 6.14718775972624426647711872891, 7.910064797137352686713310287414, 9.547555170260467992615995719614, 10.38977440035234956371513727029, 11.25365885118844922524939086315, 11.93776344882074927780374176785