L(s) = 1 | + (0.224 − 0.690i)2-s + (−2.35 − 3.23i)3-s + (2.80 + 2.04i)4-s + (−2.76 + 0.898i)6-s + (−0.224 − 0.163i)7-s + (4.39 − 3.19i)8-s + (−2.16 + 6.65i)9-s + (10.3 − 3.66i)11-s − 13.8i·12-s + (3.49 − 10.7i)13-s + (−0.163 + 0.118i)14-s + (3.07 + 9.45i)16-s + (−6.26 − 19.2i)17-s + (4.11 + 2.98i)18-s + (−16.9 − 23.3i)19-s + ⋯ |
L(s) = 1 | + (0.112 − 0.345i)2-s + (−0.783 − 1.07i)3-s + (0.702 + 0.510i)4-s + (−0.460 + 0.149i)6-s + (−0.0320 − 0.0233i)7-s + (0.549 − 0.398i)8-s + (−0.240 + 0.739i)9-s + (0.942 − 0.333i)11-s − 1.15i·12-s + (0.268 − 0.827i)13-s + (−0.0116 + 0.00846i)14-s + (0.192 + 0.591i)16-s + (−0.368 − 1.13i)17-s + (0.228 + 0.166i)18-s + (−0.893 − 1.22i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.444 + 0.896i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.444 + 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.797433 - 1.28513i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.797433 - 1.28513i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-10.3 + 3.66i)T \) |
good | 2 | \( 1 + (-0.224 + 0.690i)T + (-3.23 - 2.35i)T^{2} \) |
| 3 | \( 1 + (2.35 + 3.23i)T + (-2.78 + 8.55i)T^{2} \) |
| 7 | \( 1 + (0.224 + 0.163i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-3.49 + 10.7i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (6.26 + 19.2i)T + (-233. + 169. i)T^{2} \) |
| 19 | \( 1 + (16.9 + 23.3i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 - 27.6iT - 529T^{2} \) |
| 29 | \( 1 + (10.2 - 14.0i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-10.6 + 32.6i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (-7.80 + 10.7i)T + (-423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (10.6 + 14.6i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 - 34.7T + 1.84e3T^{2} \) |
| 47 | \( 1 + (27.9 + 38.4i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (39.5 + 12.8i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-82.3 - 59.8i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-48.4 + 15.7i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 40.1iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (-8.70 - 26.8i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-80.7 - 58.6i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-125. - 40.6i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-38.7 - 119. i)T + (-5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 88.9T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-45.9 - 14.9i)T + (7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39680029685734235514568541370, −11.04433739958683137494784410917, −9.526980715733401508469431930005, −8.225665831254003779750314139033, −7.10330970995087406579357094047, −6.64465892522788601483533504598, −5.46777922278079238276985489068, −3.76943973718646503868571345568, −2.31737656316043028735024404336, −0.832077140266127751695800853089,
1.79722394690446140846753588602, 3.96826416058712152719713258263, 4.79616038509050711220048032473, 6.19417371860863151206372315255, 6.47264925850958938148968036971, 8.103991978441795251901841042243, 9.363783765078963385377254969491, 10.32781791901245978272429336283, 10.87750705555844905827001939458, 11.71988376913890893974598708741