L(s) = 1 | − 1.46·2-s − 0.114i·3-s − 1.86·4-s + 0.167i·6-s − 4.56·7-s + 8.56·8-s + 8.98·9-s + (5.89 − 9.28i)11-s + 0.213i·12-s − 16.5·13-s + 6.66·14-s − 5.05·16-s − 17.2·17-s − 13.1·18-s + 35.8i·19-s + ⋯ |
L(s) = 1 | − 0.730·2-s − 0.0381i·3-s − 0.466·4-s + 0.0278i·6-s − 0.651·7-s + 1.07·8-s + 0.998·9-s + (0.535 − 0.844i)11-s + 0.0178i·12-s − 1.27·13-s + 0.475·14-s − 0.316·16-s − 1.01·17-s − 0.729·18-s + 1.88i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.515 - 0.856i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.515 - 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.201551 + 0.356570i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.201551 + 0.356570i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-5.89 + 9.28i)T \) |
good | 2 | \( 1 + 1.46T + 4T^{2} \) |
| 3 | \( 1 + 0.114iT - 9T^{2} \) |
| 7 | \( 1 + 4.56T + 49T^{2} \) |
| 13 | \( 1 + 16.5T + 169T^{2} \) |
| 17 | \( 1 + 17.2T + 289T^{2} \) |
| 19 | \( 1 - 35.8iT - 361T^{2} \) |
| 23 | \( 1 - 29.3iT - 529T^{2} \) |
| 29 | \( 1 + 8.51iT - 841T^{2} \) |
| 31 | \( 1 + 26.3T + 961T^{2} \) |
| 37 | \( 1 - 44.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 52.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 6.77T + 1.84e3T^{2} \) |
| 47 | \( 1 - 15.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 33.1iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 51.5T + 3.48e3T^{2} \) |
| 61 | \( 1 - 23.1iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 113. iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 8.00T + 5.04e3T^{2} \) |
| 73 | \( 1 - 32.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + 52.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 43.3T + 6.88e3T^{2} \) |
| 89 | \( 1 + 73.8T + 7.92e3T^{2} \) |
| 97 | \( 1 - 22.0iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00214887568683506009438326495, −10.76147903586623262225554507316, −9.754925526241026911218380376138, −9.429860281476976910341554909066, −8.155287504175759307224126277806, −7.33150753424863853494655196680, −6.14837872757333939321842770897, −4.70370420075297770093879091843, −3.58016260902171640292069919654, −1.52970829332777798699802492519,
0.27559550827180294252060993208, 2.20029074505558710957741269092, 4.19221481041451359231913342403, 4.91369007537528926384074551113, 6.91920437609623446353520919067, 7.22237451549930557721169322908, 8.805548891377915116196477095051, 9.420728742922955200335344450298, 10.12150727889225713268330191043, 11.06872025133458000615788612813