L(s) = 1 | + (−1.96 + 1.96i)2-s + (0.866 + 0.5i)3-s − 5.75i·4-s + (−1.75 + 0.470i)5-s + (−2.68 + 0.720i)6-s + (2.27 + 1.35i)7-s + (7.38 + 7.38i)8-s + (0.499 + 0.866i)9-s + (2.52 − 4.37i)10-s + (−4.28 + 1.14i)11-s + (2.87 − 4.97i)12-s + (−2.12 + 2.91i)13-s + (−7.13 + 1.81i)14-s + (−1.75 − 0.470i)15-s − 17.5·16-s + 0.0643·17-s + ⋯ |
L(s) = 1 | + (−1.39 + 1.39i)2-s + (0.499 + 0.288i)3-s − 2.87i·4-s + (−0.784 + 0.210i)5-s + (−1.09 + 0.294i)6-s + (0.859 + 0.510i)7-s + (2.61 + 2.61i)8-s + (0.166 + 0.288i)9-s + (0.799 − 1.38i)10-s + (−1.29 + 0.346i)11-s + (0.829 − 1.43i)12-s + (−0.590 + 0.807i)13-s + (−1.90 + 0.486i)14-s + (−0.452 − 0.121i)15-s − 4.39·16-s + 0.0156·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 + 0.248i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0597171 - 0.473504i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0597171 - 0.473504i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2.27 - 1.35i)T \) |
| 13 | \( 1 + (2.12 - 2.91i)T \) |
good | 2 | \( 1 + (1.96 - 1.96i)T - 2iT^{2} \) |
| 5 | \( 1 + (1.75 - 0.470i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (4.28 - 1.14i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 - 0.0643T + 17T^{2} \) |
| 19 | \( 1 + (0.788 - 2.94i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + 3.21iT - 23T^{2} \) |
| 29 | \( 1 + (-2.41 - 4.18i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.34 - 5.02i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (3.08 + 3.08i)T + 37iT^{2} \) |
| 41 | \( 1 + (-2.12 + 7.93i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (3.22 + 1.86i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.08 - 4.06i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-3.30 - 5.71i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.28 - 3.28i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1.90 + 1.09i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.62 - 6.07i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (1.98 + 7.40i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-6.03 - 1.61i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-0.639 + 1.10i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.90 - 8.90i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.02 - 1.02i)T - 89iT^{2} \) |
| 97 | \( 1 + (-8.79 + 2.35i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21353173688123522798035253358, −10.89641856849177121559537205244, −10.32925597878593438545957783966, −9.172243662889758555580996145047, −8.426032901514374125035961144185, −7.70633326392615680831880318424, −7.03497275255780784662612853759, −5.51965846340573924868614518650, −4.62145337671258667614350465312, −2.08107869112410323446615061925,
0.52866566809800929713429875302, 2.25123804186960528770718055204, 3.39138122661670869063899507841, 4.66040688422665351040479540283, 7.30955425625133758967495870764, 8.020185852594662797595801557406, 8.297042807366277888083907819243, 9.647186515036312402090366021646, 10.44902322686833570911543924933, 11.30476943630791725685253398193