| L(s) = 1 | − 2-s + 5-s + 8-s + 9-s − 10-s + 11-s − 13-s − 16-s + 2·17-s − 18-s − 22-s + 25-s + 26-s − 31-s − 2·34-s + 40-s − 43-s + 45-s − 50-s + 55-s − 59-s + 62-s + 64-s − 65-s − 71-s + 72-s − 73-s + ⋯ |
| L(s) = 1 | − 2-s + 5-s + 8-s + 9-s − 10-s + 11-s − 13-s − 16-s + 2·17-s − 18-s − 22-s + 25-s + 26-s − 31-s − 2·34-s + 40-s − 43-s + 45-s − 50-s + 55-s − 59-s + 62-s + 64-s − 65-s − 71-s + 72-s − 73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9493221856\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9493221856\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 - T \) |
| 7 | \( 1 \) |
| 11 | \( 1 - T \) |
| good | 2 | \( 1 + T + T^{2} \) |
| 3 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( ( 1 - T )^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 + T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.221794053437689668690348303361, −8.428522512928050774621782742616, −7.42708686755809798317485345367, −7.11535625591917661627564229810, −6.02285511588967042612794442161, −5.15796786223111297483692753034, −4.37202446885125778043441482152, −3.27044774257802213984610453279, −1.84293378050175807563833964232, −1.20717714747313553103586371497,
1.20717714747313553103586371497, 1.84293378050175807563833964232, 3.27044774257802213984610453279, 4.37202446885125778043441482152, 5.15796786223111297483692753034, 6.02285511588967042612794442161, 7.11535625591917661627564229810, 7.42708686755809798317485345367, 8.428522512928050774621782742616, 9.221794053437689668690348303361