L(s) = 1 | + 2·3-s + 2·4-s + 2·7-s + 3·9-s + 4·12-s + 4·13-s − 6·17-s + 4·19-s + 4·21-s + 12·23-s − 4·25-s + 4·27-s + 4·28-s − 6·29-s + 16·31-s + 6·36-s − 14·37-s + 8·39-s + 6·41-s + 4·43-s − 24·47-s + 3·49-s − 12·51-s + 8·52-s − 6·53-s + 8·57-s + 4·61-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 4-s + 0.755·7-s + 9-s + 1.15·12-s + 1.10·13-s − 1.45·17-s + 0.917·19-s + 0.872·21-s + 2.50·23-s − 4/5·25-s + 0.769·27-s + 0.755·28-s − 1.11·29-s + 2.87·31-s + 36-s − 2.30·37-s + 1.28·39-s + 0.937·41-s + 0.609·43-s − 3.50·47-s + 3/7·49-s − 1.68·51-s + 1.10·52-s − 0.824·53-s + 1.05·57-s + 0.512·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7112889 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7112889 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(7.026467746\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.026467746\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.002106697574846549238966804383, −8.582961843504661814972934814529, −8.333854013153734751896655491834, −7.82163518079327196831331359507, −7.74851595444853039329574339737, −7.00771028189804565477611062757, −6.88236497167738781734271983423, −6.43796658552937101059481167412, −6.29492396907212322616902875580, −5.45383735625270982849180921939, −4.98718079212420576325213364252, −4.82794472560227298101268428262, −4.19326088927695085362579266290, −3.76272811892513590923826996963, −3.13258262158209135687308174415, −2.97568520213590850281150463075, −2.43696633240949063460412632614, −1.68441610522505223825387644787, −1.66170372175561095069064860899, −0.796797708794726098704515066891,
0.796797708794726098704515066891, 1.66170372175561095069064860899, 1.68441610522505223825387644787, 2.43696633240949063460412632614, 2.97568520213590850281150463075, 3.13258262158209135687308174415, 3.76272811892513590923826996963, 4.19326088927695085362579266290, 4.82794472560227298101268428262, 4.98718079212420576325213364252, 5.45383735625270982849180921939, 6.29492396907212322616902875580, 6.43796658552937101059481167412, 6.88236497167738781734271983423, 7.00771028189804565477611062757, 7.74851595444853039329574339737, 7.82163518079327196831331359507, 8.333854013153734751896655491834, 8.582961843504661814972934814529, 9.002106697574846549238966804383