L(s) = 1 | + (−0.309 − 0.951i)3-s + (−2.76 − 2.00i)5-s + (−0.348 + 1.07i)7-s + (−0.809 + 0.587i)9-s + (−0.151 − 3.31i)11-s + (−5.67 + 4.12i)13-s + (−1.05 + 3.24i)15-s + (−3.63 − 2.63i)17-s + (−1.71 − 5.26i)19-s + 1.12·21-s + 6.03·23-s + (2.05 + 6.32i)25-s + (0.809 + 0.587i)27-s + (−0.469 + 1.44i)29-s + (2.66 − 1.93i)31-s + ⋯ |
L(s) = 1 | + (−0.178 − 0.549i)3-s + (−1.23 − 0.897i)5-s + (−0.131 + 0.404i)7-s + (−0.269 + 0.195i)9-s + (−0.0457 − 0.998i)11-s + (−1.57 + 1.14i)13-s + (−0.272 + 0.838i)15-s + (−0.881 − 0.640i)17-s + (−0.392 − 1.20i)19-s + 0.245·21-s + 1.25·23-s + (0.410 + 1.26i)25-s + (0.155 + 0.113i)27-s + (−0.0871 + 0.268i)29-s + (0.478 − 0.347i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0797333 - 0.469868i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0797333 - 0.469868i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (0.151 + 3.31i)T \) |
good | 5 | \( 1 + (2.76 + 2.00i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.348 - 1.07i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (5.67 - 4.12i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.63 + 2.63i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.71 + 5.26i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 6.03T + 23T^{2} \) |
| 29 | \( 1 + (0.469 - 1.44i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.66 + 1.93i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.24 + 6.91i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.93 + 9.02i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 1.96T + 43T^{2} \) |
| 47 | \( 1 + (-1.87 - 5.78i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.952 - 0.691i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.06 + 3.29i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.42 - 1.76i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 11.1T + 67T^{2} \) |
| 71 | \( 1 + (13.1 + 9.54i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (1.29 - 3.98i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.87 + 1.36i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.459 - 0.333i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 13.9T + 89T^{2} \) |
| 97 | \( 1 + (-8.17 + 5.93i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.62975592598615499965103107832, −11.03953081161000638035987508965, −9.170448282484274393041096471068, −8.783387063460769551611721500271, −7.51790336135722744778373307783, −6.78445880538031367317480515356, −5.20027865462852633737369343168, −4.33908717039591673386875579846, −2.59860614528398558229479688816, −0.36231611637422432710624801560,
2.82349249752504298581670794261, 4.01032514935605213723537676362, 4.98440240005803145221169600393, 6.64763859245716155185655388474, 7.46011933562942251298260687834, 8.338155550644496841861408882862, 9.976083149018410119509828366338, 10.35189986051393527954822489970, 11.38883166133916155354009253744, 12.23033264201180469092895087394