Properties

Label 264.2.q.e.25.1
Level $264$
Weight $2$
Character 264.25
Analytic conductor $2.108$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(25,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.q (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.185640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + x^{5} + 4x^{4} + 3x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 25.1
Root \(-0.245684 + 1.71454i\) of defining polynomial
Character \(\chi\) \(=\) 264.25
Dual form 264.2.q.e.169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{3} +(-2.76124 - 2.00616i) q^{5} +(-0.348159 + 1.07152i) q^{7} +(-0.809017 + 0.587785i) q^{9} +(-0.151841 - 3.31315i) q^{11} +(-5.67433 + 4.12264i) q^{13} +(-1.05470 + 3.24604i) q^{15} +(-3.63359 - 2.63996i) q^{17} +(-1.71188 - 5.26862i) q^{19} +1.12667 q^{21} +6.03112 q^{23} +(2.05470 + 6.32372i) q^{25} +(0.809017 + 0.587785i) q^{27} +(-0.469489 + 1.44494i) q^{29} +(2.66581 - 1.93682i) q^{31} +(-3.10407 + 1.16823i) q^{33} +(3.11100 - 2.26027i) q^{35} +(2.24568 - 6.91151i) q^{37} +(5.67433 + 4.12264i) q^{39} +(-2.93133 - 9.02172i) q^{41} -1.96888 q^{43} +3.41309 q^{45} +(1.87928 + 5.78382i) q^{47} +(4.63617 + 3.36838i) q^{49} +(-1.38791 + 4.27155i) q^{51} +(-0.952227 + 0.691834i) q^{53} +(-6.22744 + 9.45303i) q^{55} +(-4.48175 + 3.25618i) q^{57} +(1.06965 - 3.29205i) q^{59} +(2.42270 + 1.76020i) q^{61} +(-0.348159 - 1.07152i) q^{63} +23.9389 q^{65} +11.1512 q^{67} +(-1.86372 - 5.73594i) q^{69} +(-13.1309 - 9.54016i) q^{71} +(-1.29444 + 3.98388i) q^{73} +(5.37928 - 3.90827i) q^{75} +(3.60298 + 0.990799i) q^{77} +(1.87235 - 1.36034i) q^{79} +(0.309017 - 0.951057i) q^{81} +(0.459264 + 0.333675i) q^{83} +(4.73705 + 14.5792i) q^{85} +1.51930 q^{87} -13.9581 q^{89} +(-2.44194 - 7.51550i) q^{91} +(-2.66581 - 1.93682i) q^{93} +(-5.84278 + 17.9822i) q^{95} +(8.17433 - 5.93900i) q^{97} +(2.07026 + 2.59114i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - q^{5} - 5 q^{7} - 2 q^{9} + q^{11} - q^{13} + q^{15} - 4 q^{17} - 2 q^{19} + 10 q^{21} + 16 q^{23} + 7 q^{25} + 2 q^{27} - 7 q^{29} + 29 q^{31} - 6 q^{33} - 20 q^{35} + 13 q^{37} + q^{39}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 0.951057i −0.178411 0.549093i
\(4\) 0 0
\(5\) −2.76124 2.00616i −1.23487 0.897183i −0.237621 0.971358i \(-0.576368\pi\)
−0.997245 + 0.0741753i \(0.976368\pi\)
\(6\) 0 0
\(7\) −0.348159 + 1.07152i −0.131592 + 0.404997i −0.995044 0.0994325i \(-0.968297\pi\)
0.863453 + 0.504430i \(0.168297\pi\)
\(8\) 0 0
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) −0.151841 3.31315i −0.0457819 0.998951i
\(12\) 0 0
\(13\) −5.67433 + 4.12264i −1.57378 + 1.14342i −0.650352 + 0.759633i \(0.725379\pi\)
−0.923423 + 0.383783i \(0.874621\pi\)
\(14\) 0 0
\(15\) −1.05470 + 3.24604i −0.272323 + 0.838123i
\(16\) 0 0
\(17\) −3.63359 2.63996i −0.881276 0.640284i 0.0523128 0.998631i \(-0.483341\pi\)
−0.933589 + 0.358346i \(0.883341\pi\)
\(18\) 0 0
\(19\) −1.71188 5.26862i −0.392732 1.20870i −0.930714 0.365747i \(-0.880813\pi\)
0.537983 0.842956i \(-0.319187\pi\)
\(20\) 0 0
\(21\) 1.12667 0.245858
\(22\) 0 0
\(23\) 6.03112 1.25758 0.628788 0.777577i \(-0.283551\pi\)
0.628788 + 0.777577i \(0.283551\pi\)
\(24\) 0 0
\(25\) 2.05470 + 6.32372i 0.410940 + 1.26474i
\(26\) 0 0
\(27\) 0.809017 + 0.587785i 0.155695 + 0.113119i
\(28\) 0 0
\(29\) −0.469489 + 1.44494i −0.0871820 + 0.268319i −0.985137 0.171768i \(-0.945052\pi\)
0.897955 + 0.440086i \(0.145052\pi\)
\(30\) 0 0
\(31\) 2.66581 1.93682i 0.478793 0.347863i −0.322065 0.946717i \(-0.604377\pi\)
0.800858 + 0.598854i \(0.204377\pi\)
\(32\) 0 0
\(33\) −3.10407 + 1.16823i −0.540349 + 0.203362i
\(34\) 0 0
\(35\) 3.11100 2.26027i 0.525855 0.382056i
\(36\) 0 0
\(37\) 2.24568 6.91151i 0.369188 1.13624i −0.578128 0.815946i \(-0.696217\pi\)
0.947317 0.320299i \(-0.103783\pi\)
\(38\) 0 0
\(39\) 5.67433 + 4.12264i 0.908620 + 0.660151i
\(40\) 0 0
\(41\) −2.93133 9.02172i −0.457797 1.40896i −0.867819 0.496880i \(-0.834479\pi\)
0.410022 0.912076i \(-0.365521\pi\)
\(42\) 0 0
\(43\) −1.96888 −0.300251 −0.150126 0.988667i \(-0.547968\pi\)
−0.150126 + 0.988667i \(0.547968\pi\)
\(44\) 0 0
\(45\) 3.41309 0.508793
\(46\) 0 0
\(47\) 1.87928 + 5.78382i 0.274121 + 0.843657i 0.989451 + 0.144870i \(0.0462765\pi\)
−0.715330 + 0.698787i \(0.753723\pi\)
\(48\) 0 0
\(49\) 4.63617 + 3.36838i 0.662311 + 0.481197i
\(50\) 0 0
\(51\) −1.38791 + 4.27155i −0.194346 + 0.598136i
\(52\) 0 0
\(53\) −0.952227 + 0.691834i −0.130798 + 0.0950307i −0.651261 0.758854i \(-0.725760\pi\)
0.520462 + 0.853885i \(0.325760\pi\)
\(54\) 0 0
\(55\) −6.22744 + 9.45303i −0.839707 + 1.27465i
\(56\) 0 0
\(57\) −4.48175 + 3.25618i −0.593623 + 0.431292i
\(58\) 0 0
\(59\) 1.06965 3.29205i 0.139257 0.428589i −0.856971 0.515365i \(-0.827656\pi\)
0.996228 + 0.0867761i \(0.0276565\pi\)
\(60\) 0 0
\(61\) 2.42270 + 1.76020i 0.310195 + 0.225370i 0.731980 0.681326i \(-0.238596\pi\)
−0.421785 + 0.906696i \(0.638596\pi\)
\(62\) 0 0
\(63\) −0.348159 1.07152i −0.0438639 0.134999i
\(64\) 0 0
\(65\) 23.9389 2.96925
\(66\) 0 0
\(67\) 11.1512 1.36233 0.681167 0.732128i \(-0.261473\pi\)
0.681167 + 0.732128i \(0.261473\pi\)
\(68\) 0 0
\(69\) −1.86372 5.73594i −0.224365 0.690526i
\(70\) 0 0
\(71\) −13.1309 9.54016i −1.55835 1.13221i −0.937344 0.348404i \(-0.886724\pi\)
−0.621007 0.783805i \(-0.713276\pi\)
\(72\) 0 0
\(73\) −1.29444 + 3.98388i −0.151503 + 0.466278i −0.997790 0.0664492i \(-0.978833\pi\)
0.846287 + 0.532728i \(0.178833\pi\)
\(74\) 0 0
\(75\) 5.37928 3.90827i 0.621146 0.451289i
\(76\) 0 0
\(77\) 3.60298 + 0.990799i 0.410597 + 0.112912i
\(78\) 0 0
\(79\) 1.87235 1.36034i 0.210656 0.153050i −0.477455 0.878656i \(-0.658440\pi\)
0.688110 + 0.725606i \(0.258440\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) 0.459264 + 0.333675i 0.0504108 + 0.0366256i 0.612705 0.790311i \(-0.290081\pi\)
−0.562295 + 0.826937i \(0.690081\pi\)
\(84\) 0 0
\(85\) 4.73705 + 14.5792i 0.513806 + 1.58133i
\(86\) 0 0
\(87\) 1.51930 0.162886
\(88\) 0 0
\(89\) −13.9581 −1.47956 −0.739779 0.672850i \(-0.765070\pi\)
−0.739779 + 0.672850i \(0.765070\pi\)
\(90\) 0 0
\(91\) −2.44194 7.51550i −0.255984 0.787839i
\(92\) 0 0
\(93\) −2.66581 1.93682i −0.276431 0.200839i
\(94\) 0 0
\(95\) −5.84278 + 17.9822i −0.599457 + 1.84494i
\(96\) 0 0
\(97\) 8.17433 5.93900i 0.829977 0.603014i −0.0895755 0.995980i \(-0.528551\pi\)
0.919553 + 0.392966i \(0.128551\pi\)
\(98\) 0 0
\(99\) 2.07026 + 2.59114i 0.208069 + 0.260420i
\(100\) 0 0
\(101\) −3.31337 + 2.40730i −0.329692 + 0.239535i −0.740300 0.672277i \(-0.765317\pi\)
0.410608 + 0.911812i \(0.365317\pi\)
\(102\) 0 0
\(103\) −0.321280 + 0.988798i −0.0316567 + 0.0974292i −0.965636 0.259897i \(-0.916311\pi\)
0.933980 + 0.357326i \(0.116311\pi\)
\(104\) 0 0
\(105\) −3.11100 2.26027i −0.303602 0.220580i
\(106\) 0 0
\(107\) −0.542438 1.66945i −0.0524395 0.161392i 0.921407 0.388599i \(-0.127041\pi\)
−0.973847 + 0.227207i \(0.927041\pi\)
\(108\) 0 0
\(109\) −1.11797 −0.107082 −0.0535409 0.998566i \(-0.517051\pi\)
−0.0535409 + 0.998566i \(0.517051\pi\)
\(110\) 0 0
\(111\) −7.26719 −0.689771
\(112\) 0 0
\(113\) 0.203896 + 0.627528i 0.0191809 + 0.0590329i 0.960189 0.279352i \(-0.0901195\pi\)
−0.941008 + 0.338385i \(0.890120\pi\)
\(114\) 0 0
\(115\) −16.6534 12.0994i −1.55294 1.12827i
\(116\) 0 0
\(117\) 2.16740 6.67057i 0.200376 0.616695i
\(118\) 0 0
\(119\) 4.09384 2.97435i 0.375282 0.272658i
\(120\) 0 0
\(121\) −10.9539 + 1.00615i −0.995808 + 0.0914678i
\(122\) 0 0
\(123\) −7.67433 + 5.57573i −0.691971 + 0.502746i
\(124\) 0 0
\(125\) 1.73936 5.35321i 0.155574 0.478806i
\(126\) 0 0
\(127\) −15.7897 11.4719i −1.40111 1.01796i −0.994541 0.104342i \(-0.966726\pi\)
−0.406566 0.913622i \(-0.633274\pi\)
\(128\) 0 0
\(129\) 0.608417 + 1.87252i 0.0535682 + 0.164866i
\(130\) 0 0
\(131\) −4.41309 −0.385573 −0.192787 0.981241i \(-0.561752\pi\)
−0.192787 + 0.981241i \(0.561752\pi\)
\(132\) 0 0
\(133\) 6.24144 0.541202
\(134\) 0 0
\(135\) −1.05470 3.24604i −0.0907742 0.279374i
\(136\) 0 0
\(137\) −2.46619 1.79179i −0.210701 0.153083i 0.477430 0.878670i \(-0.341568\pi\)
−0.688131 + 0.725587i \(0.741568\pi\)
\(138\) 0 0
\(139\) −1.13261 + 3.48581i −0.0960666 + 0.295663i −0.987530 0.157430i \(-0.949679\pi\)
0.891464 + 0.453092i \(0.149679\pi\)
\(140\) 0 0
\(141\) 4.92001 3.57460i 0.414340 0.301036i
\(142\) 0 0
\(143\) 14.5205 + 18.1739i 1.21427 + 1.51978i
\(144\) 0 0
\(145\) 4.19516 3.04796i 0.348389 0.253119i
\(146\) 0 0
\(147\) 1.77086 5.45015i 0.146058 0.449521i
\(148\) 0 0
\(149\) −1.86630 1.35595i −0.152893 0.111083i 0.508709 0.860939i \(-0.330123\pi\)
−0.661602 + 0.749855i \(0.730123\pi\)
\(150\) 0 0
\(151\) −0.391206 1.20401i −0.0318359 0.0979808i 0.933876 0.357597i \(-0.116404\pi\)
−0.965712 + 0.259616i \(0.916404\pi\)
\(152\) 0 0
\(153\) 4.49137 0.363106
\(154\) 0 0
\(155\) −11.2465 −0.903342
\(156\) 0 0
\(157\) −3.21351 9.89018i −0.256466 0.789322i −0.993537 0.113507i \(-0.963792\pi\)
0.737071 0.675815i \(-0.236208\pi\)
\(158\) 0 0
\(159\) 0.952227 + 0.691834i 0.0755165 + 0.0548660i
\(160\) 0 0
\(161\) −2.09979 + 6.46248i −0.165486 + 0.509315i
\(162\) 0 0
\(163\) −0.456576 + 0.331722i −0.0357618 + 0.0259825i −0.605523 0.795828i \(-0.707036\pi\)
0.569761 + 0.821811i \(0.307036\pi\)
\(164\) 0 0
\(165\) 10.9147 + 3.00150i 0.849712 + 0.233666i
\(166\) 0 0
\(167\) −3.32716 + 2.41732i −0.257463 + 0.187058i −0.709028 0.705180i \(-0.750866\pi\)
0.451565 + 0.892238i \(0.350866\pi\)
\(168\) 0 0
\(169\) 11.1846 34.4227i 0.860356 2.64790i
\(170\) 0 0
\(171\) 4.48175 + 3.25618i 0.342728 + 0.249007i
\(172\) 0 0
\(173\) 2.52045 + 7.75715i 0.191626 + 0.589765i 0.999999 + 0.00109471i \(0.000348457\pi\)
−0.808373 + 0.588671i \(0.799652\pi\)
\(174\) 0 0
\(175\) −7.49137 −0.566294
\(176\) 0 0
\(177\) −3.46147 −0.260180
\(178\) 0 0
\(179\) 4.86637 + 14.9771i 0.363729 + 1.11944i 0.950773 + 0.309888i \(0.100292\pi\)
−0.587044 + 0.809555i \(0.699708\pi\)
\(180\) 0 0
\(181\) −20.8771 15.1681i −1.55178 1.12744i −0.942365 0.334585i \(-0.891404\pi\)
−0.609417 0.792850i \(-0.708596\pi\)
\(182\) 0 0
\(183\) 0.925390 2.84806i 0.0684068 0.210534i
\(184\) 0 0
\(185\) −20.0665 + 14.5792i −1.47532 + 1.07188i
\(186\) 0 0
\(187\) −8.19485 + 12.4395i −0.599267 + 0.909665i
\(188\) 0 0
\(189\) −0.911491 + 0.662237i −0.0663012 + 0.0481707i
\(190\) 0 0
\(191\) −1.94200 + 5.97687i −0.140518 + 0.432471i −0.996407 0.0846884i \(-0.973011\pi\)
0.855889 + 0.517159i \(0.173011\pi\)
\(192\) 0 0
\(193\) 17.1742 + 12.4778i 1.23623 + 0.898172i 0.997341 0.0728756i \(-0.0232176\pi\)
0.238887 + 0.971047i \(0.423218\pi\)
\(194\) 0 0
\(195\) −7.39753 22.7672i −0.529748 1.63040i
\(196\) 0 0
\(197\) 10.9336 0.778987 0.389493 0.921029i \(-0.372650\pi\)
0.389493 + 0.921029i \(0.372650\pi\)
\(198\) 0 0
\(199\) 13.7094 0.971835 0.485918 0.874005i \(-0.338486\pi\)
0.485918 + 0.874005i \(0.338486\pi\)
\(200\) 0 0
\(201\) −3.44591 10.6054i −0.243056 0.748048i
\(202\) 0 0
\(203\) −1.38483 1.00614i −0.0971959 0.0706169i
\(204\) 0 0
\(205\) −10.0049 + 30.7919i −0.698772 + 2.15060i
\(206\) 0 0
\(207\) −4.87928 + 3.54500i −0.339133 + 0.246395i
\(208\) 0 0
\(209\) −17.1958 + 6.47169i −1.18946 + 0.447656i
\(210\) 0 0
\(211\) 17.2966 12.5667i 1.19075 0.865129i 0.197404 0.980322i \(-0.436749\pi\)
0.993343 + 0.115194i \(0.0367488\pi\)
\(212\) 0 0
\(213\) −5.01556 + 15.4363i −0.343660 + 1.05768i
\(214\) 0 0
\(215\) 5.43656 + 3.94989i 0.370770 + 0.269380i
\(216\) 0 0
\(217\) 1.14722 + 3.53079i 0.0778786 + 0.239686i
\(218\) 0 0
\(219\) 4.18890 0.283060
\(220\) 0 0
\(221\) 31.5018 2.11904
\(222\) 0 0
\(223\) 7.51552 + 23.1304i 0.503276 + 1.54893i 0.803649 + 0.595103i \(0.202889\pi\)
−0.300373 + 0.953822i \(0.597111\pi\)
\(224\) 0 0
\(225\) −5.37928 3.90827i −0.358619 0.260552i
\(226\) 0 0
\(227\) 5.38356 16.5689i 0.357319 1.09972i −0.597333 0.801993i \(-0.703773\pi\)
0.954652 0.297723i \(-0.0962271\pi\)
\(228\) 0 0
\(229\) −11.1074 + 8.07002i −0.734000 + 0.533282i −0.890826 0.454344i \(-0.849874\pi\)
0.156826 + 0.987626i \(0.449874\pi\)
\(230\) 0 0
\(231\) −0.171074 3.73281i −0.0112559 0.245601i
\(232\) 0 0
\(233\) −5.02150 + 3.64834i −0.328970 + 0.239010i −0.739993 0.672614i \(-0.765171\pi\)
0.411024 + 0.911625i \(0.365171\pi\)
\(234\) 0 0
\(235\) 6.41414 19.7407i 0.418412 1.28774i
\(236\) 0 0
\(237\) −1.87235 1.36034i −0.121622 0.0883637i
\(238\) 0 0
\(239\) −2.97679 9.16163i −0.192553 0.592617i −0.999996 0.00267191i \(-0.999150\pi\)
0.807444 0.589945i \(-0.200850\pi\)
\(240\) 0 0
\(241\) 12.0675 0.777338 0.388669 0.921377i \(-0.372935\pi\)
0.388669 + 0.921377i \(0.372935\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −6.04410 18.6018i −0.386143 1.18843i
\(246\) 0 0
\(247\) 31.4344 + 22.8384i 2.00012 + 1.45317i
\(248\) 0 0
\(249\) 0.175423 0.539897i 0.0111170 0.0342146i
\(250\) 0 0
\(251\) 19.3381 14.0499i 1.22061 0.886823i 0.224457 0.974484i \(-0.427939\pi\)
0.996150 + 0.0876608i \(0.0279392\pi\)
\(252\) 0 0
\(253\) −0.915773 19.9820i −0.0575742 1.25626i
\(254\) 0 0
\(255\) 12.4018 9.01041i 0.776629 0.564254i
\(256\) 0 0
\(257\) −3.20984 + 9.87887i −0.200224 + 0.616227i 0.799651 + 0.600464i \(0.205018\pi\)
−0.999876 + 0.0157626i \(0.994982\pi\)
\(258\) 0 0
\(259\) 6.62398 + 4.81260i 0.411594 + 0.299040i
\(260\) 0 0
\(261\) −0.469489 1.44494i −0.0290607 0.0894395i
\(262\) 0 0
\(263\) −1.30382 −0.0803967 −0.0401984 0.999192i \(-0.512799\pi\)
−0.0401984 + 0.999192i \(0.512799\pi\)
\(264\) 0 0
\(265\) 4.01726 0.246778
\(266\) 0 0
\(267\) 4.31330 + 13.2750i 0.263970 + 0.812415i
\(268\) 0 0
\(269\) 7.26400 + 5.27760i 0.442894 + 0.321781i 0.786784 0.617229i \(-0.211745\pi\)
−0.343890 + 0.939010i \(0.611745\pi\)
\(270\) 0 0
\(271\) 8.34377 25.6795i 0.506848 1.55992i −0.290794 0.956786i \(-0.593919\pi\)
0.797642 0.603132i \(-0.206081\pi\)
\(272\) 0 0
\(273\) −6.39307 + 4.64484i −0.386926 + 0.281118i
\(274\) 0 0
\(275\) 20.6394 7.76773i 1.24460 0.468412i
\(276\) 0 0
\(277\) −20.0917 + 14.5974i −1.20719 + 0.877075i −0.994973 0.100147i \(-0.968069\pi\)
−0.212218 + 0.977222i \(0.568069\pi\)
\(278\) 0 0
\(279\) −1.01825 + 3.13384i −0.0609609 + 0.187618i
\(280\) 0 0
\(281\) 24.1855 + 17.5718i 1.44279 + 1.04825i 0.987451 + 0.157925i \(0.0504805\pi\)
0.455335 + 0.890320i \(0.349520\pi\)
\(282\) 0 0
\(283\) 2.94095 + 9.05131i 0.174821 + 0.538045i 0.999625 0.0273742i \(-0.00871455\pi\)
−0.824804 + 0.565419i \(0.808715\pi\)
\(284\) 0 0
\(285\) 18.9076 1.11999
\(286\) 0 0
\(287\) 10.6875 0.630865
\(288\) 0 0
\(289\) 0.980324 + 3.01713i 0.0576661 + 0.177478i
\(290\) 0 0
\(291\) −8.17433 5.93900i −0.479188 0.348150i
\(292\) 0 0
\(293\) −3.34157 + 10.2843i −0.195216 + 0.600814i 0.804758 + 0.593603i \(0.202295\pi\)
−0.999974 + 0.00721059i \(0.997705\pi\)
\(294\) 0 0
\(295\) −9.55796 + 6.94426i −0.556486 + 0.404311i
\(296\) 0 0
\(297\) 1.82458 2.76964i 0.105873 0.160711i
\(298\) 0 0
\(299\) −34.2226 + 24.8641i −1.97914 + 1.43793i
\(300\) 0 0
\(301\) 0.685483 2.10970i 0.0395106 0.121601i
\(302\) 0 0
\(303\) 3.31337 + 2.40730i 0.190348 + 0.138296i
\(304\) 0 0
\(305\) −3.15843 9.72066i −0.180851 0.556604i
\(306\) 0 0
\(307\) −22.1996 −1.26700 −0.633498 0.773744i \(-0.718382\pi\)
−0.633498 + 0.773744i \(0.718382\pi\)
\(308\) 0 0
\(309\) 1.03968 0.0591456
\(310\) 0 0
\(311\) −8.66074 26.6550i −0.491106 1.51147i −0.822939 0.568130i \(-0.807667\pi\)
0.331834 0.943338i \(-0.392333\pi\)
\(312\) 0 0
\(313\) −1.52347 1.10687i −0.0861118 0.0625639i 0.543896 0.839152i \(-0.316948\pi\)
−0.630008 + 0.776589i \(0.716948\pi\)
\(314\) 0 0
\(315\) −1.18830 + 3.65720i −0.0669529 + 0.206060i
\(316\) 0 0
\(317\) 4.37384 3.17778i 0.245659 0.178482i −0.458142 0.888879i \(-0.651485\pi\)
0.703801 + 0.710397i \(0.251485\pi\)
\(318\) 0 0
\(319\) 4.85859 + 1.33609i 0.272029 + 0.0748064i
\(320\) 0 0
\(321\) −1.42012 + 1.03178i −0.0792635 + 0.0575883i
\(322\) 0 0
\(323\) −7.68867 + 23.6633i −0.427809 + 1.31666i
\(324\) 0 0
\(325\) −37.7295 27.4121i −2.09286 1.52055i
\(326\) 0 0
\(327\) 0.345471 + 1.06325i 0.0191046 + 0.0587979i
\(328\) 0 0
\(329\) −6.85178 −0.377751
\(330\) 0 0
\(331\) 17.9023 0.983998 0.491999 0.870596i \(-0.336266\pi\)
0.491999 + 0.870596i \(0.336266\pi\)
\(332\) 0 0
\(333\) 2.24568 + 6.91151i 0.123063 + 0.378748i
\(334\) 0 0
\(335\) −30.7912 22.3711i −1.68230 1.22226i
\(336\) 0 0
\(337\) 9.32086 28.6867i 0.507740 1.56266i −0.288376 0.957517i \(-0.593115\pi\)
0.796115 0.605145i \(-0.206885\pi\)
\(338\) 0 0
\(339\) 0.533807 0.387834i 0.0289924 0.0210642i
\(340\) 0 0
\(341\) −6.82176 8.53812i −0.369419 0.462365i
\(342\) 0 0
\(343\) −11.6039 + 8.43069i −0.626549 + 0.455215i
\(344\) 0 0
\(345\) −6.36103 + 19.5772i −0.342466 + 1.05400i
\(346\) 0 0
\(347\) 7.60308 + 5.52396i 0.408155 + 0.296542i 0.772854 0.634583i \(-0.218828\pi\)
−0.364700 + 0.931125i \(0.618828\pi\)
\(348\) 0 0
\(349\) 3.01499 + 9.27919i 0.161389 + 0.496704i 0.998752 0.0499432i \(-0.0159040\pi\)
−0.837363 + 0.546647i \(0.815904\pi\)
\(350\) 0 0
\(351\) −7.01386 −0.374372
\(352\) 0 0
\(353\) −16.6632 −0.886894 −0.443447 0.896301i \(-0.646245\pi\)
−0.443447 + 0.896301i \(0.646245\pi\)
\(354\) 0 0
\(355\) 17.1185 + 52.6854i 0.908558 + 2.79625i
\(356\) 0 0
\(357\) −4.09384 2.97435i −0.216669 0.157419i
\(358\) 0 0
\(359\) 8.75734 26.9523i 0.462195 1.42249i −0.400282 0.916392i \(-0.631088\pi\)
0.862477 0.506097i \(-0.168912\pi\)
\(360\) 0 0
\(361\) −9.45647 + 6.87053i −0.497709 + 0.361607i
\(362\) 0 0
\(363\) 4.34184 + 10.1069i 0.227887 + 0.530472i
\(364\) 0 0
\(365\) 11.5666 8.40362i 0.605423 0.439865i
\(366\) 0 0
\(367\) 7.10505 21.8671i 0.370881 1.14145i −0.575335 0.817918i \(-0.695128\pi\)
0.946216 0.323536i \(-0.104872\pi\)
\(368\) 0 0
\(369\) 7.67433 + 5.57573i 0.399510 + 0.290261i
\(370\) 0 0
\(371\) −0.409789 1.26120i −0.0212752 0.0654783i
\(372\) 0 0
\(373\) −31.2842 −1.61983 −0.809916 0.586546i \(-0.800487\pi\)
−0.809916 + 0.586546i \(0.800487\pi\)
\(374\) 0 0
\(375\) −5.62870 −0.290665
\(376\) 0 0
\(377\) −3.29293 10.1346i −0.169595 0.521959i
\(378\) 0 0
\(379\) 2.19703 + 1.59624i 0.112854 + 0.0819933i 0.642781 0.766050i \(-0.277781\pi\)
−0.529927 + 0.848043i \(0.677781\pi\)
\(380\) 0 0
\(381\) −6.03112 + 18.5619i −0.308984 + 0.950954i
\(382\) 0 0
\(383\) 26.6777 19.3824i 1.36316 0.990397i 0.364928 0.931036i \(-0.381094\pi\)
0.998237 0.0593610i \(-0.0189063\pi\)
\(384\) 0 0
\(385\) −7.96099 9.96399i −0.405730 0.507812i
\(386\) 0 0
\(387\) 1.59286 1.15728i 0.0809695 0.0588278i
\(388\) 0 0
\(389\) 0.777222 2.39204i 0.0394067 0.121281i −0.929418 0.369029i \(-0.879690\pi\)
0.968825 + 0.247748i \(0.0796903\pi\)
\(390\) 0 0
\(391\) −21.9146 15.9219i −1.10827 0.805206i
\(392\) 0 0
\(393\) 1.36372 + 4.19709i 0.0687905 + 0.211715i
\(394\) 0 0
\(395\) −7.89908 −0.397446
\(396\) 0 0
\(397\) 6.18374 0.310353 0.155177 0.987887i \(-0.450405\pi\)
0.155177 + 0.987887i \(0.450405\pi\)
\(398\) 0 0
\(399\) −1.92871 5.93597i −0.0965564 0.297170i
\(400\) 0 0
\(401\) 15.2879 + 11.1073i 0.763442 + 0.554673i 0.899964 0.435964i \(-0.143593\pi\)
−0.136522 + 0.990637i \(0.543593\pi\)
\(402\) 0 0
\(403\) −7.14184 + 21.9803i −0.355761 + 1.09492i
\(404\) 0 0
\(405\) −2.76124 + 2.00616i −0.137207 + 0.0996870i
\(406\) 0 0
\(407\) −23.2398 6.39083i −1.15196 0.316782i
\(408\) 0 0
\(409\) 13.2151 9.60131i 0.653443 0.474754i −0.210999 0.977486i \(-0.567672\pi\)
0.864442 + 0.502732i \(0.167672\pi\)
\(410\) 0 0
\(411\) −0.942002 + 2.89918i −0.0464655 + 0.143006i
\(412\) 0 0
\(413\) 3.15510 + 2.29231i 0.155252 + 0.112797i
\(414\) 0 0
\(415\) −0.598734 1.84271i −0.0293907 0.0904553i
\(416\) 0 0
\(417\) 3.66520 0.179486
\(418\) 0 0
\(419\) −14.2738 −0.697320 −0.348660 0.937249i \(-0.613363\pi\)
−0.348660 + 0.937249i \(0.613363\pi\)
\(420\) 0 0
\(421\) 1.24306 + 3.82576i 0.0605832 + 0.186456i 0.976768 0.214301i \(-0.0687473\pi\)
−0.916185 + 0.400757i \(0.868747\pi\)
\(422\) 0 0
\(423\) −4.92001 3.57460i −0.239219 0.173803i
\(424\) 0 0
\(425\) 9.22842 28.4022i 0.447644 1.37771i
\(426\) 0 0
\(427\) −2.72957 + 1.98315i −0.132093 + 0.0959714i
\(428\) 0 0
\(429\) 12.7973 19.4259i 0.617861 0.937890i
\(430\) 0 0
\(431\) 11.7600 8.54417i 0.566461 0.411558i −0.267357 0.963598i \(-0.586150\pi\)
0.833818 + 0.552039i \(0.186150\pi\)
\(432\) 0 0
\(433\) 1.24421 3.82930i 0.0597931 0.184024i −0.916699 0.399580i \(-0.869156\pi\)
0.976492 + 0.215555i \(0.0691561\pi\)
\(434\) 0 0
\(435\) −4.19516 3.04796i −0.201142 0.146139i
\(436\) 0 0
\(437\) −10.3245 31.7757i −0.493890 1.52004i
\(438\) 0 0
\(439\) 11.9183 0.568830 0.284415 0.958701i \(-0.408201\pi\)
0.284415 + 0.958701i \(0.408201\pi\)
\(440\) 0 0
\(441\) −5.73063 −0.272887
\(442\) 0 0
\(443\) −9.98232 30.7224i −0.474274 1.45967i −0.846934 0.531698i \(-0.821554\pi\)
0.372660 0.927968i \(-0.378446\pi\)
\(444\) 0 0
\(445\) 38.5418 + 28.0023i 1.82706 + 1.32743i
\(446\) 0 0
\(447\) −0.712863 + 2.19397i −0.0337172 + 0.103771i
\(448\) 0 0
\(449\) −13.5173 + 9.82091i −0.637922 + 0.463478i −0.859136 0.511748i \(-0.828998\pi\)
0.221214 + 0.975225i \(0.428998\pi\)
\(450\) 0 0
\(451\) −29.4452 + 11.0818i −1.38652 + 0.521822i
\(452\) 0 0
\(453\) −1.02419 + 0.744118i −0.0481207 + 0.0349617i
\(454\) 0 0
\(455\) −8.33453 + 25.6511i −0.390729 + 1.20254i
\(456\) 0 0
\(457\) −23.1717 16.8352i −1.08393 0.787519i −0.105563 0.994413i \(-0.533665\pi\)
−0.978363 + 0.206894i \(0.933665\pi\)
\(458\) 0 0
\(459\) −1.38791 4.27155i −0.0647821 0.199379i
\(460\) 0 0
\(461\) −3.66860 −0.170864 −0.0854319 0.996344i \(-0.527227\pi\)
−0.0854319 + 0.996344i \(0.527227\pi\)
\(462\) 0 0
\(463\) −34.3251 −1.59522 −0.797612 0.603171i \(-0.793904\pi\)
−0.797612 + 0.603171i \(0.793904\pi\)
\(464\) 0 0
\(465\) 3.47537 + 10.6961i 0.161166 + 0.496019i
\(466\) 0 0
\(467\) 22.4565 + 16.3156i 1.03916 + 0.754997i 0.970122 0.242617i \(-0.0780057\pi\)
0.0690422 + 0.997614i \(0.478006\pi\)
\(468\) 0 0
\(469\) −3.88238 + 11.9487i −0.179272 + 0.551742i
\(470\) 0 0
\(471\) −8.41309 + 6.11246i −0.387655 + 0.281647i
\(472\) 0 0
\(473\) 0.298957 + 6.52319i 0.0137461 + 0.299937i
\(474\) 0 0
\(475\) 29.7999 21.6509i 1.36731 0.993410i
\(476\) 0 0
\(477\) 0.363718 1.11941i 0.0166535 0.0512543i
\(478\) 0 0
\(479\) −2.32991 1.69278i −0.106456 0.0773451i 0.533283 0.845937i \(-0.320958\pi\)
−0.639740 + 0.768592i \(0.720958\pi\)
\(480\) 0 0
\(481\) 15.7509 + 48.4763i 0.718180 + 2.21033i
\(482\) 0 0
\(483\) 6.79505 0.309186
\(484\) 0 0
\(485\) −34.4859 −1.56592
\(486\) 0 0
\(487\) −2.22271 6.84080i −0.100721 0.309986i 0.887982 0.459879i \(-0.152107\pi\)
−0.988702 + 0.149893i \(0.952107\pi\)
\(488\) 0 0
\(489\) 0.456576 + 0.331722i 0.0206471 + 0.0150010i
\(490\) 0 0
\(491\) −2.71620 + 8.35961i −0.122580 + 0.377264i −0.993452 0.114246i \(-0.963555\pi\)
0.870872 + 0.491510i \(0.163555\pi\)
\(492\) 0 0
\(493\) 5.52052 4.01089i 0.248632 0.180641i
\(494\) 0 0
\(495\) −0.518248 11.3081i −0.0232935 0.508259i
\(496\) 0 0
\(497\) 14.7941 10.7486i 0.663608 0.482139i
\(498\) 0 0
\(499\) −9.44250 + 29.0610i −0.422704 + 1.30095i 0.482471 + 0.875912i \(0.339739\pi\)
−0.905175 + 0.425039i \(0.860261\pi\)
\(500\) 0 0
\(501\) 3.32716 + 2.41732i 0.148646 + 0.107998i
\(502\) 0 0
\(503\) −0.260676 0.802280i −0.0116230 0.0357719i 0.945077 0.326848i \(-0.105987\pi\)
−0.956700 + 0.291076i \(0.905987\pi\)
\(504\) 0 0
\(505\) 13.9784 0.622033
\(506\) 0 0
\(507\) −36.1942 −1.60744
\(508\) 0 0
\(509\) −9.62894 29.6348i −0.426795 1.31354i −0.901265 0.433268i \(-0.857360\pi\)
0.474470 0.880272i \(-0.342640\pi\)
\(510\) 0 0
\(511\) −3.81815 2.77405i −0.168905 0.122717i
\(512\) 0 0
\(513\) 1.71188 5.26862i 0.0755812 0.232615i
\(514\) 0 0
\(515\) 2.87082 2.08577i 0.126504 0.0919102i
\(516\) 0 0
\(517\) 18.8773 7.10455i 0.830223 0.312458i
\(518\) 0 0
\(519\) 6.59863 4.79418i 0.289648 0.210441i
\(520\) 0 0
\(521\) 9.07950 27.9438i 0.397780 1.22424i −0.528995 0.848625i \(-0.677431\pi\)
0.926775 0.375617i \(-0.122569\pi\)
\(522\) 0 0
\(523\) 30.4510 + 22.1239i 1.33153 + 0.967412i 0.999710 + 0.0240688i \(0.00766209\pi\)
0.331818 + 0.943343i \(0.392338\pi\)
\(524\) 0 0
\(525\) 2.31496 + 7.12472i 0.101033 + 0.310948i
\(526\) 0 0
\(527\) −14.7996 −0.644680
\(528\) 0 0
\(529\) 13.3744 0.581496
\(530\) 0 0
\(531\) 1.06965 + 3.29205i 0.0464190 + 0.142863i
\(532\) 0 0
\(533\) 53.8267 + 39.1074i 2.33149 + 1.69393i
\(534\) 0 0
\(535\) −1.85139 + 5.69799i −0.0800425 + 0.246346i
\(536\) 0 0
\(537\) 12.7403 9.25638i 0.549785 0.399442i
\(538\) 0 0
\(539\) 10.4560 15.8718i 0.450370 0.683646i
\(540\) 0 0
\(541\) 24.1255 17.5282i 1.03724 0.753597i 0.0674932 0.997720i \(-0.478500\pi\)
0.969744 + 0.244123i \(0.0784999\pi\)
\(542\) 0 0
\(543\) −7.97434 + 24.5425i −0.342212 + 1.05322i
\(544\) 0 0
\(545\) 3.08698 + 2.24282i 0.132232 + 0.0960720i
\(546\) 0 0
\(547\) 3.47476 + 10.6942i 0.148570 + 0.457251i 0.997453 0.0713299i \(-0.0227243\pi\)
−0.848883 + 0.528581i \(0.822724\pi\)
\(548\) 0 0
\(549\) −2.99462 −0.127807
\(550\) 0 0
\(551\) 8.41654 0.358557
\(552\) 0 0
\(553\) 0.805761 + 2.47988i 0.0342645 + 0.105455i
\(554\) 0 0
\(555\) 20.0665 + 14.5792i 0.851775 + 0.618851i
\(556\) 0 0
\(557\) −5.02908 + 15.4779i −0.213089 + 0.655821i 0.786195 + 0.617979i \(0.212048\pi\)
−0.999284 + 0.0378418i \(0.987952\pi\)
\(558\) 0 0
\(559\) 11.1721 8.11699i 0.472529 0.343312i
\(560\) 0 0
\(561\) 14.3630 + 3.94975i 0.606406 + 0.166759i
\(562\) 0 0
\(563\) 7.38791 5.36763i 0.311363 0.226219i −0.421118 0.907006i \(-0.638362\pi\)
0.732481 + 0.680787i \(0.238362\pi\)
\(564\) 0 0
\(565\) 0.695915 2.14181i 0.0292774 0.0901065i
\(566\) 0 0
\(567\) 0.911491 + 0.662237i 0.0382790 + 0.0278113i
\(568\) 0 0
\(569\) 4.62992 + 14.2494i 0.194096 + 0.597367i 0.999986 + 0.00530134i \(0.00168748\pi\)
−0.805890 + 0.592066i \(0.798313\pi\)
\(570\) 0 0
\(571\) −34.5185 −1.44456 −0.722278 0.691603i \(-0.756905\pi\)
−0.722278 + 0.691603i \(0.756905\pi\)
\(572\) 0 0
\(573\) 6.28445 0.262537
\(574\) 0 0
\(575\) 12.3922 + 38.1391i 0.516788 + 1.59051i
\(576\) 0 0
\(577\) −4.37020 3.17514i −0.181934 0.132183i 0.493091 0.869978i \(-0.335867\pi\)
−0.675025 + 0.737795i \(0.735867\pi\)
\(578\) 0 0
\(579\) 6.55997 20.1895i 0.272623 0.839047i
\(580\) 0 0
\(581\) −0.517437 + 0.375940i −0.0214669 + 0.0155966i
\(582\) 0 0
\(583\) 2.43673 + 3.04982i 0.100919 + 0.126311i
\(584\) 0 0
\(585\) −19.3670 + 14.0709i −0.800726 + 0.581761i
\(586\) 0 0
\(587\) −2.24711 + 6.91590i −0.0927483 + 0.285450i −0.986660 0.162793i \(-0.947950\pi\)
0.893912 + 0.448242i \(0.147950\pi\)
\(588\) 0 0
\(589\) −14.7679 10.7295i −0.608501 0.442102i
\(590\) 0 0
\(591\) −3.37867 10.3985i −0.138980 0.427736i
\(592\) 0 0
\(593\) 35.3724 1.45257 0.726286 0.687393i \(-0.241245\pi\)
0.726286 + 0.687393i \(0.241245\pi\)
\(594\) 0 0
\(595\) −17.2711 −0.708047
\(596\) 0 0
\(597\) −4.23644 13.0384i −0.173386 0.533628i
\(598\) 0 0
\(599\) 9.57087 + 6.95364i 0.391055 + 0.284118i 0.765888 0.642974i \(-0.222300\pi\)
−0.374833 + 0.927093i \(0.622300\pi\)
\(600\) 0 0
\(601\) 3.80106 11.6985i 0.155049 0.477190i −0.843117 0.537730i \(-0.819282\pi\)
0.998166 + 0.0605394i \(0.0192821\pi\)
\(602\) 0 0
\(603\) −9.02150 + 6.55451i −0.367384 + 0.266920i
\(604\) 0 0
\(605\) 32.2649 + 19.1971i 1.31175 + 0.780471i
\(606\) 0 0
\(607\) 27.4199 19.9217i 1.11294 0.808597i 0.129814 0.991538i \(-0.458562\pi\)
0.983124 + 0.182942i \(0.0585619\pi\)
\(608\) 0 0
\(609\) −0.528957 + 1.62796i −0.0214344 + 0.0659684i
\(610\) 0 0
\(611\) −34.5083 25.0717i −1.39606 1.01429i
\(612\) 0 0
\(613\) −3.20420 9.86150i −0.129416 0.398302i 0.865264 0.501317i \(-0.167151\pi\)
−0.994680 + 0.103015i \(0.967151\pi\)
\(614\) 0 0
\(615\) 32.3765 1.30555
\(616\) 0 0
\(617\) −45.0416 −1.81331 −0.906653 0.421878i \(-0.861371\pi\)
−0.906653 + 0.421878i \(0.861371\pi\)
\(618\) 0 0
\(619\) −12.3390 37.9757i −0.495948 1.52637i −0.815474 0.578794i \(-0.803524\pi\)
0.319526 0.947577i \(-0.396476\pi\)
\(620\) 0 0
\(621\) 4.87928 + 3.54500i 0.195799 + 0.142256i
\(622\) 0 0
\(623\) 4.85964 14.9564i 0.194698 0.599217i
\(624\) 0 0
\(625\) 11.3542 8.24929i 0.454167 0.329971i
\(626\) 0 0
\(627\) 11.4687 + 14.3543i 0.458017 + 0.573255i
\(628\) 0 0
\(629\) −26.4060 + 19.1851i −1.05288 + 0.764960i
\(630\) 0 0
\(631\) 8.37989 25.7906i 0.333598 1.02671i −0.633810 0.773488i \(-0.718510\pi\)
0.967409 0.253221i \(-0.0814899\pi\)
\(632\) 0 0
\(633\) −17.2966 12.5667i −0.687478 0.499482i
\(634\) 0 0
\(635\) 20.5847 + 63.3533i 0.816880 + 2.51410i
\(636\) 0 0
\(637\) −40.1938 −1.59254
\(638\) 0 0
\(639\) 16.2307 0.642076
\(640\) 0 0
\(641\) 7.65480 + 23.5590i 0.302346 + 0.930526i 0.980654 + 0.195748i \(0.0627136\pi\)
−0.678308 + 0.734778i \(0.737286\pi\)
\(642\) 0 0
\(643\) 1.13904 + 0.827558i 0.0449192 + 0.0326357i 0.610018 0.792387i \(-0.291162\pi\)
−0.565099 + 0.825023i \(0.691162\pi\)
\(644\) 0 0
\(645\) 2.07658 6.39106i 0.0817653 0.251648i
\(646\) 0 0
\(647\) 2.66471 1.93603i 0.104761 0.0761131i −0.534172 0.845376i \(-0.679376\pi\)
0.638932 + 0.769263i \(0.279376\pi\)
\(648\) 0 0
\(649\) −11.0695 3.04405i −0.434515 0.119489i
\(650\) 0 0
\(651\) 3.00347 2.18215i 0.117715 0.0855252i
\(652\) 0 0
\(653\) −7.08687 + 21.8112i −0.277331 + 0.853536i 0.711262 + 0.702926i \(0.248124\pi\)
−0.988593 + 0.150610i \(0.951876\pi\)
\(654\) 0 0
\(655\) 12.1856 + 8.85336i 0.476131 + 0.345929i
\(656\) 0 0
\(657\) −1.29444 3.98388i −0.0505010 0.155426i
\(658\) 0 0
\(659\) −21.6953 −0.845128 −0.422564 0.906333i \(-0.638870\pi\)
−0.422564 + 0.906333i \(0.638870\pi\)
\(660\) 0 0
\(661\) 24.5020 0.953016 0.476508 0.879170i \(-0.341902\pi\)
0.476508 + 0.879170i \(0.341902\pi\)
\(662\) 0 0
\(663\) −9.73460 29.9600i −0.378060 1.16355i
\(664\) 0 0
\(665\) −17.2342 12.5213i −0.668312 0.485557i
\(666\) 0 0
\(667\) −2.83155 + 8.71460i −0.109638 + 0.337431i
\(668\) 0 0
\(669\) 19.6759 14.2954i 0.760714 0.552691i
\(670\) 0 0
\(671\) 5.46392 8.29404i 0.210932 0.320188i
\(672\) 0 0
\(673\) −13.8894 + 10.0912i −0.535397 + 0.388989i −0.822373 0.568949i \(-0.807350\pi\)
0.286976 + 0.957938i \(0.407350\pi\)
\(674\) 0 0
\(675\) −2.05470 + 6.32372i −0.0790855 + 0.243400i
\(676\) 0 0
\(677\) 22.4121 + 16.2834i 0.861368 + 0.625820i 0.928257 0.371940i \(-0.121307\pi\)
−0.0668888 + 0.997760i \(0.521307\pi\)
\(678\) 0 0
\(679\) 3.51780 + 10.8267i 0.135001 + 0.415490i
\(680\) 0 0
\(681\) −17.4216 −0.667596
\(682\) 0 0
\(683\) 19.1156 0.731440 0.365720 0.930725i \(-0.380823\pi\)
0.365720 + 0.930725i \(0.380823\pi\)
\(684\) 0 0
\(685\) 3.21513 + 9.89516i 0.122844 + 0.378075i
\(686\) 0 0
\(687\) 11.1074 + 8.07002i 0.423775 + 0.307891i
\(688\) 0 0
\(689\) 2.55107 7.85138i 0.0971880 0.299114i
\(690\) 0 0
\(691\) 7.49456 5.44512i 0.285106 0.207142i −0.436035 0.899930i \(-0.643618\pi\)
0.721142 + 0.692788i \(0.243618\pi\)
\(692\) 0 0
\(693\) −3.49725 + 1.31620i −0.132849 + 0.0499984i
\(694\) 0 0
\(695\) 10.1205 7.35298i 0.383893 0.278914i
\(696\) 0 0
\(697\) −13.1657 + 40.5199i −0.498686 + 1.53480i
\(698\) 0 0
\(699\) 5.02150 + 3.64834i 0.189931 + 0.137993i
\(700\) 0 0
\(701\) −8.14752 25.0755i −0.307728 0.947088i −0.978645 0.205556i \(-0.934100\pi\)
0.670918 0.741532i \(-0.265900\pi\)
\(702\) 0 0
\(703\) −40.2584 −1.51837
\(704\) 0 0
\(705\) −20.7566 −0.781738
\(706\) 0 0
\(707\) −1.42590 4.38847i −0.0536265 0.165045i
\(708\) 0 0
\(709\) 9.73784 + 7.07495i 0.365712 + 0.265705i 0.755431 0.655229i \(-0.227428\pi\)
−0.389719 + 0.920934i \(0.627428\pi\)
\(710\) 0 0
\(711\) −0.715174 + 2.20108i −0.0268211 + 0.0825469i
\(712\) 0 0
\(713\) 16.0778 11.6812i 0.602118 0.437465i
\(714\) 0 0
\(715\) −3.63491 79.3131i −0.135938 2.96614i
\(716\) 0 0
\(717\) −7.79335 + 5.66220i −0.291048 + 0.211459i
\(718\) 0 0
\(719\) −14.9955 + 46.1515i −0.559239 + 1.72116i 0.125237 + 0.992127i \(0.460031\pi\)
−0.684476 + 0.729035i \(0.739969\pi\)
\(720\) 0 0
\(721\) −0.947663 0.688517i −0.0352928 0.0256417i
\(722\) 0 0
\(723\) −3.72907 11.4769i −0.138686 0.426831i
\(724\) 0 0
\(725\) −10.1021 −0.375181
\(726\) 0 0
\(727\) 15.2577 0.565878 0.282939 0.959138i \(-0.408691\pi\)
0.282939 + 0.959138i \(0.408691\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) 7.15411 + 5.19777i 0.264604 + 0.192246i
\(732\) 0 0
\(733\) 10.6093 32.6522i 0.391865 1.20604i −0.539512 0.841978i \(-0.681391\pi\)
0.931376 0.364058i \(-0.118609\pi\)
\(734\) 0 0
\(735\) −15.8237 + 11.4966i −0.583664 + 0.424057i
\(736\) 0 0
\(737\) −1.69321 36.9455i −0.0623703 1.36091i
\(738\) 0 0
\(739\) 20.3011 14.7496i 0.746787 0.542572i −0.148043 0.988981i \(-0.547297\pi\)
0.894829 + 0.446409i \(0.147297\pi\)
\(740\) 0 0
\(741\) 12.0069 36.9533i 0.441083 1.35751i
\(742\) 0 0
\(743\) −19.3062 14.0268i −0.708277 0.514593i 0.174341 0.984685i \(-0.444221\pi\)
−0.882617 + 0.470092i \(0.844221\pi\)
\(744\) 0 0
\(745\) 2.43306 + 7.48819i 0.0891405 + 0.274346i
\(746\) 0 0
\(747\) −0.567681 −0.0207704
\(748\) 0 0
\(749\) 1.97771 0.0722640
\(750\) 0 0
\(751\) 2.15949 + 6.64622i 0.0788008 + 0.242524i 0.982695 0.185233i \(-0.0593040\pi\)
−0.903894 + 0.427757i \(0.859304\pi\)
\(752\) 0 0
\(753\) −19.3381 14.0499i −0.704718 0.512008i
\(754\) 0 0
\(755\) −1.33522 + 4.10938i −0.0485936 + 0.149556i
\(756\) 0 0
\(757\) −13.9467 + 10.1329i −0.506901 + 0.368285i −0.811647 0.584149i \(-0.801428\pi\)
0.304746 + 0.952434i \(0.401428\pi\)
\(758\) 0 0
\(759\) −18.7210 + 7.04573i −0.679530 + 0.255744i
\(760\) 0 0
\(761\) −0.601206 + 0.436802i −0.0217937 + 0.0158341i −0.598629 0.801027i \(-0.704288\pi\)
0.576835 + 0.816861i \(0.304288\pi\)
\(762\) 0 0
\(763\) 0.389230 1.19793i 0.0140911 0.0433679i
\(764\) 0 0
\(765\) −12.4018 9.01041i −0.448387 0.325772i
\(766\) 0 0
\(767\) 7.50239 + 23.0900i 0.270896 + 0.833731i
\(768\) 0 0
\(769\) −24.8227 −0.895129 −0.447564 0.894252i \(-0.647708\pi\)
−0.447564 + 0.894252i \(0.647708\pi\)
\(770\) 0 0
\(771\) 10.3873 0.374088
\(772\) 0 0
\(773\) −0.191385 0.589022i −0.00688364 0.0211857i 0.947556 0.319591i \(-0.103545\pi\)
−0.954439 + 0.298405i \(0.903545\pi\)
\(774\) 0 0
\(775\) 17.7254 + 12.8782i 0.636714 + 0.462600i
\(776\) 0 0
\(777\) 2.53013 7.78695i 0.0907681 0.279355i
\(778\) 0 0
\(779\) −42.5139 + 30.8881i −1.52322 + 1.10668i
\(780\) 0 0
\(781\) −29.6141 + 44.9532i −1.05968 + 1.60855i
\(782\) 0 0
\(783\) −1.22914 + 0.893022i −0.0439259 + 0.0319140i
\(784\) 0 0
\(785\) −10.9680 + 33.7560i −0.391465 + 1.20480i
\(786\) 0 0
\(787\) 14.1072 + 10.2495i 0.502868 + 0.365355i 0.810111 0.586276i \(-0.199407\pi\)
−0.307243 + 0.951631i \(0.599407\pi\)
\(788\) 0 0
\(789\) 0.402901 + 1.24000i 0.0143437 + 0.0441453i
\(790\) 0 0
\(791\) −0.743399 −0.0264322
\(792\) 0 0
\(793\) −21.0039 −0.745869
\(794\) 0 0
\(795\) −1.24140 3.82064i −0.0440280 0.135504i
\(796\) 0 0
\(797\) −15.5856 11.3236i −0.552070 0.401103i 0.276478 0.961020i \(-0.410833\pi\)
−0.828548 + 0.559918i \(0.810833\pi\)
\(798\) 0 0
\(799\) 8.44053 25.9773i 0.298605 0.919010i
\(800\) 0 0
\(801\) 11.2924 8.20438i 0.398996 0.289888i
\(802\) 0 0
\(803\) 13.3957 + 3.68376i 0.472726 + 0.129997i
\(804\) 0 0
\(805\) 18.7628 13.6320i 0.661302 0.480464i
\(806\) 0 0
\(807\) 2.77460 8.53934i 0.0976706 0.300599i
\(808\) 0 0
\(809\) −12.1919 8.85795i −0.428645 0.311429i 0.352462 0.935826i \(-0.385345\pi\)
−0.781107 + 0.624397i \(0.785345\pi\)
\(810\) 0 0
\(811\) −5.93492 18.2658i −0.208403 0.641400i −0.999556 0.0297814i \(-0.990519\pi\)
0.791153 0.611618i \(-0.209481\pi\)
\(812\) 0 0
\(813\) −27.0010 −0.946966
\(814\) 0 0
\(815\) 1.92621 0.0674721
\(816\) 0 0
\(817\) 3.37048 + 10.3733i 0.117918 + 0.362915i
\(818\) 0 0
\(819\) 6.39307 + 4.64484i 0.223392 + 0.162304i
\(820\) 0 0
\(821\) −3.40380 + 10.4758i −0.118794 + 0.365609i −0.992719 0.120450i \(-0.961566\pi\)
0.873926 + 0.486059i \(0.161566\pi\)
\(822\) 0 0
\(823\) −42.5890 + 30.9427i −1.48456 + 1.07860i −0.508509 + 0.861057i \(0.669803\pi\)
−0.976051 + 0.217540i \(0.930197\pi\)
\(824\) 0 0
\(825\) −13.7655 17.2289i −0.479253 0.599833i
\(826\) 0 0
\(827\) −9.15350 + 6.65041i −0.318298 + 0.231257i −0.735449 0.677580i \(-0.763029\pi\)
0.417151 + 0.908837i \(0.363029\pi\)
\(828\) 0 0
\(829\) 3.09279 9.51863i 0.107417 0.330596i −0.882873 0.469612i \(-0.844394\pi\)
0.990290 + 0.139016i \(0.0443939\pi\)
\(830\) 0 0
\(831\) 20.0917 + 14.5974i 0.696972 + 0.506380i
\(832\) 0 0
\(833\) −7.95359 24.4786i −0.275576 0.848134i
\(834\) 0 0
\(835\) 14.0366 0.485758
\(836\) 0 0
\(837\) 3.29512 0.113896
\(838\) 0 0
\(839\) 0.766202 + 2.35813i 0.0264522 + 0.0814116i 0.963411 0.268028i \(-0.0863720\pi\)
−0.936959 + 0.349440i \(0.886372\pi\)
\(840\) 0 0
\(841\) 21.5941 + 15.6890i 0.744623 + 0.541000i
\(842\) 0 0
\(843\) 9.23804 28.4318i 0.318175 0.979242i
\(844\) 0 0
\(845\) −99.9410 + 72.6114i −3.43808 + 2.49791i
\(846\) 0 0
\(847\) 2.73558 12.0876i 0.0939958 0.415336i
\(848\) 0 0
\(849\) 7.69951 5.59402i 0.264246 0.191986i
\(850\) 0 0
\(851\) 13.5440 41.6841i 0.464282 1.42891i
\(852\) 0 0
\(853\) 17.5627 + 12.7601i 0.601337 + 0.436897i 0.846353 0.532622i \(-0.178793\pi\)
−0.245016 + 0.969519i \(0.578793\pi\)
\(854\) 0 0
\(855\) −5.84278 17.9822i −0.199819 0.614980i
\(856\) 0 0
\(857\) −27.8959 −0.952905 −0.476453 0.879200i \(-0.658078\pi\)
−0.476453 + 0.879200i \(0.658078\pi\)
\(858\) 0 0
\(859\) −38.9369 −1.32851 −0.664255 0.747506i \(-0.731251\pi\)
−0.664255 + 0.747506i \(0.731251\pi\)
\(860\) 0 0
\(861\) −3.30263 10.1645i −0.112553 0.346404i
\(862\) 0 0
\(863\) −16.9583 12.3210i −0.577269 0.419410i 0.260470 0.965482i \(-0.416123\pi\)
−0.837738 + 0.546072i \(0.816123\pi\)
\(864\) 0 0
\(865\) 8.60252 26.4758i 0.292494 0.900205i
\(866\) 0 0
\(867\) 2.56652 1.86469i 0.0871636 0.0633281i
\(868\) 0 0
\(869\) −4.79131 5.99681i −0.162534 0.203428i
\(870\) 0 0
\(871\) −63.2755 + 45.9724i −2.14401 + 1.55771i
\(872\) 0 0
\(873\) −3.12232 + 9.60950i −0.105674 + 0.325232i
\(874\) 0 0
\(875\) 5.13051 + 3.72754i 0.173443 + 0.126014i
\(876\) 0 0
\(877\) −1.87758 5.77858i −0.0634012 0.195129i 0.914338 0.404951i \(-0.132711\pi\)
−0.977740 + 0.209822i \(0.932711\pi\)
\(878\) 0 0
\(879\) 10.8135 0.364731
\(880\) 0 0
\(881\) −9.25951 −0.311961 −0.155980 0.987760i \(-0.549854\pi\)
−0.155980 + 0.987760i \(0.549854\pi\)
\(882\) 0 0
\(883\) −4.72865 14.5533i −0.159132 0.489758i 0.839424 0.543477i \(-0.182892\pi\)
−0.998556 + 0.0537192i \(0.982892\pi\)
\(884\) 0 0
\(885\) 9.55796 + 6.94426i 0.321287 + 0.233429i
\(886\) 0 0
\(887\) 1.23712 3.80746i 0.0415384 0.127842i −0.928137 0.372239i \(-0.878590\pi\)
0.969675 + 0.244397i \(0.0785901\pi\)
\(888\) 0 0
\(889\) 17.7897 12.9250i 0.596647 0.433489i
\(890\) 0 0
\(891\) −3.19791 0.879409i −0.107134 0.0294613i
\(892\) 0 0
\(893\) 27.2557 19.8024i 0.912076 0.662662i
\(894\) 0 0
\(895\) 16.6093 51.1182i 0.555188 1.70869i
\(896\) 0 0
\(897\) 34.2226 + 24.8641i 1.14266 + 0.830190i
\(898\) 0 0
\(899\) 1.54702 + 4.76125i 0.0515961 + 0.158796i
\(900\) 0 0
\(901\) 5.28642 0.176116
\(902\) 0 0
\(903\) −2.21827 −0.0738194
\(904\) 0 0
\(905\) 27.2171 + 83.7656i 0.904727 + 2.78446i
\(906\) 0 0
\(907\) 0.115830 + 0.0841558i 0.00384609 + 0.00279435i 0.589707 0.807618i \(-0.299243\pi\)
−0.585861 + 0.810412i \(0.699243\pi\)
\(908\) 0 0
\(909\) 1.26559 3.89510i 0.0419771 0.129192i
\(910\) 0 0
\(911\) 15.8741 11.5332i 0.525933 0.382113i −0.292901 0.956143i \(-0.594621\pi\)
0.818834 + 0.574030i \(0.194621\pi\)
\(912\) 0 0
\(913\) 1.03578 1.57227i 0.0342793 0.0520347i
\(914\) 0 0
\(915\) −8.26889 + 6.00770i −0.273361 + 0.198608i
\(916\) 0 0
\(917\) 1.53645 4.72872i 0.0507382 0.156156i
\(918\) 0 0
\(919\) 7.50743 + 5.45447i 0.247647 + 0.179926i 0.704683 0.709522i \(-0.251089\pi\)
−0.457036 + 0.889448i \(0.651089\pi\)
\(920\) 0 0
\(921\) 6.86005 + 21.1130i 0.226046 + 0.695699i
\(922\) 0 0
\(923\) 113.840 3.74708
\(924\) 0 0
\(925\) 48.3206 1.58877
\(926\) 0 0
\(927\) −0.321280 0.988798i −0.0105522 0.0324764i
\(928\) 0 0
\(929\) −1.48345 1.07779i −0.0486706 0.0353612i 0.563184 0.826332i \(-0.309576\pi\)
−0.611855 + 0.790970i \(0.709576\pi\)
\(930\) 0 0
\(931\) 9.81013 30.1925i 0.321514 0.989518i
\(932\) 0 0
\(933\) −22.6741 + 16.4737i −0.742317 + 0.539325i
\(934\) 0 0
\(935\) 47.5836 17.9083i 1.55615 0.585663i
\(936\) 0 0
\(937\) −27.5380 + 20.0075i −0.899627 + 0.653618i −0.938370 0.345632i \(-0.887665\pi\)
0.0387428 + 0.999249i \(0.487665\pi\)
\(938\) 0 0
\(939\) −0.581915 + 1.79095i −0.0189901 + 0.0584455i
\(940\) 0 0
\(941\) 30.5584 + 22.2020i 0.996176 + 0.723764i 0.961265 0.275626i \(-0.0888852\pi\)
0.0349110 + 0.999390i \(0.488885\pi\)
\(942\) 0 0
\(943\) −17.6792 54.4110i −0.575715 1.77187i
\(944\) 0 0
\(945\) 3.84540 0.125091
\(946\) 0 0
\(947\) 22.7292 0.738600 0.369300 0.929310i \(-0.379598\pi\)
0.369300 + 0.929310i \(0.379598\pi\)
\(948\) 0 0
\(949\) −9.07904 27.9424i −0.294718 0.907049i
\(950\) 0 0
\(951\) −4.37384 3.17778i −0.141831 0.103047i
\(952\) 0 0
\(953\) 11.9557 36.7958i 0.387283 1.19193i −0.547528 0.836788i \(-0.684431\pi\)
0.934811 0.355147i \(-0.115569\pi\)
\(954\) 0 0
\(955\) 17.3529 12.6076i 0.561527 0.407973i
\(956\) 0 0
\(957\) −0.230693 5.03366i −0.00745723 0.162715i
\(958\) 0 0
\(959\) 2.77857 2.01875i 0.0897248 0.0651889i
\(960\) 0 0
\(961\) −6.22428 + 19.1564i −0.200783 + 0.617947i
\(962\) 0 0
\(963\) 1.42012 + 1.03178i 0.0457628 + 0.0332486i
\(964\) 0 0
\(965\) −22.3897 68.9085i −0.720751 2.21824i
\(966\) 0 0
\(967\) 17.0338 0.547769 0.273885 0.961763i \(-0.411691\pi\)
0.273885 + 0.961763i \(0.411691\pi\)
\(968\) 0 0
\(969\) 24.8811 0.799295
\(970\) 0 0
\(971\) 9.97002 + 30.6846i 0.319953 + 0.984714i 0.973667 + 0.227973i \(0.0732098\pi\)
−0.653714 + 0.756741i \(0.726790\pi\)
\(972\) 0 0
\(973\) −3.34080 2.42723i −0.107101 0.0778134i
\(974\) 0 0
\(975\) −14.4114 + 44.3537i −0.461534 + 1.42045i
\(976\) 0 0
\(977\) 37.6581 27.3602i 1.20479 0.875330i 0.210041 0.977693i \(-0.432640\pi\)
0.994747 + 0.102363i \(0.0326402\pi\)
\(978\) 0 0
\(979\) 2.11942 + 46.2453i 0.0677370 + 1.47801i
\(980\) 0 0
\(981\) 0.904455 0.657125i 0.0288770 0.0209804i
\(982\) 0 0
\(983\) −8.69019 + 26.7457i −0.277174 + 0.853054i 0.711462 + 0.702725i \(0.248033\pi\)
−0.988636 + 0.150329i \(0.951967\pi\)
\(984\) 0 0
\(985\) −30.1903 21.9346i −0.961945 0.698894i
\(986\) 0 0
\(987\) 2.11732 + 6.51643i 0.0673949 + 0.207420i
\(988\) 0 0
\(989\) −11.8746 −0.377589
\(990\) 0 0
\(991\) 20.6254 0.655187 0.327593 0.944819i \(-0.393762\pi\)
0.327593 + 0.944819i \(0.393762\pi\)
\(992\) 0 0
\(993\) −5.53211 17.0261i −0.175556 0.540306i
\(994\) 0 0
\(995\) −37.8551 27.5033i −1.20009 0.871914i
\(996\) 0 0
\(997\) −1.37829 + 4.24195i −0.0436510 + 0.134344i −0.970507 0.241073i \(-0.922501\pi\)
0.926856 + 0.375417i \(0.122501\pi\)
\(998\) 0 0
\(999\) 5.87928 4.27155i 0.186012 0.135146i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 264.2.q.e.25.1 8
3.2 odd 2 792.2.r.f.289.2 8
4.3 odd 2 528.2.y.k.289.1 8
11.2 odd 10 2904.2.a.be.1.4 4
11.4 even 5 inner 264.2.q.e.169.1 yes 8
11.9 even 5 2904.2.a.bb.1.4 4
33.2 even 10 8712.2.a.cc.1.1 4
33.20 odd 10 8712.2.a.bz.1.1 4
33.26 odd 10 792.2.r.f.433.2 8
44.15 odd 10 528.2.y.k.433.1 8
44.31 odd 10 5808.2.a.co.1.4 4
44.35 even 10 5808.2.a.cl.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.q.e.25.1 8 1.1 even 1 trivial
264.2.q.e.169.1 yes 8 11.4 even 5 inner
528.2.y.k.289.1 8 4.3 odd 2
528.2.y.k.433.1 8 44.15 odd 10
792.2.r.f.289.2 8 3.2 odd 2
792.2.r.f.433.2 8 33.26 odd 10
2904.2.a.bb.1.4 4 11.9 even 5
2904.2.a.be.1.4 4 11.2 odd 10
5808.2.a.cl.1.4 4 44.35 even 10
5808.2.a.co.1.4 4 44.31 odd 10
8712.2.a.bz.1.1 4 33.20 odd 10
8712.2.a.cc.1.1 4 33.2 even 10