Properties

Label 2-2600-5.4-c1-0-25
Degree $2$
Conductor $2600$
Sign $0.447 - 0.894i$
Analytic cond. $20.7611$
Root an. cond. $4.55643$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.56i·3-s + 1.56i·7-s + 0.561·9-s + 3.12·11-s i·13-s − 6.68i·17-s + 3.12·19-s − 2.43·21-s + 8i·23-s + 5.56i·27-s + 2·29-s + 4·31-s + 4.87i·33-s − 2.68i·37-s + 1.56·39-s + ⋯
L(s)  = 1  + 0.901i·3-s + 0.590i·7-s + 0.187·9-s + 0.941·11-s − 0.277i·13-s − 1.62i·17-s + 0.716·19-s − 0.532·21-s + 1.66i·23-s + 1.07i·27-s + 0.371·29-s + 0.718·31-s + 0.848i·33-s − 0.441i·37-s + 0.250·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2600\)    =    \(2^{3} \cdot 5^{2} \cdot 13\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(20.7611\)
Root analytic conductor: \(4.55643\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2600} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2600,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.126110009\)
\(L(\frac12)\) \(\approx\) \(2.126110009\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + iT \)
good3 \( 1 - 1.56iT - 3T^{2} \)
7 \( 1 - 1.56iT - 7T^{2} \)
11 \( 1 - 3.12T + 11T^{2} \)
17 \( 1 + 6.68iT - 17T^{2} \)
19 \( 1 - 3.12T + 19T^{2} \)
23 \( 1 - 8iT - 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 2.68iT - 37T^{2} \)
41 \( 1 - 5.12T + 41T^{2} \)
43 \( 1 + 9.56iT - 43T^{2} \)
47 \( 1 + 12.6iT - 47T^{2} \)
53 \( 1 - 5.12iT - 53T^{2} \)
59 \( 1 - 3.12T + 59T^{2} \)
61 \( 1 - 2.87T + 61T^{2} \)
67 \( 1 - 3.12iT - 67T^{2} \)
71 \( 1 - 4.68T + 71T^{2} \)
73 \( 1 - 6iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 14.2iT - 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 8.24iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.309532929611518832347427339824, −8.458512879497223167518975407116, −7.34179809100281504884500552410, −6.88478586710962422972596675418, −5.55408618802665455187914370301, −5.24024852743439684741035356903, −4.16059225580486580490814586628, −3.48825780368511270852995792402, −2.47272693607416979065566899386, −1.06841857355574265137674638716, 0.925220720116169909289406435641, 1.67116017240717675095663287501, 2.87078321645871810498035193460, 4.09874176045801630145908792133, 4.54038773955935742530112456956, 6.06224073123972797731578918310, 6.44696377189374238298877142814, 7.14995361239331762361560646178, 7.976923407647256566927889883732, 8.515698059564350467600321547635

Graph of the $Z$-function along the critical line