L(s) = 1 | + (−1.73 + i)2-s + (−2.97 − 5.15i)3-s + (1.99 − 3.46i)4-s − 13.0i·5-s + (10.3 + 5.95i)6-s + (−3.11 − 1.79i)7-s + 7.99i·8-s + (−4.23 + 7.34i)9-s + (13.0 + 22.5i)10-s + (−24.2 + 14.0i)11-s − 23.8·12-s + (40.6 + 23.2i)13-s + 7.19·14-s + (−67.2 + 38.8i)15-s + (−8 − 13.8i)16-s + (57.7 − 100. i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.573 − 0.992i)3-s + (0.249 − 0.433i)4-s − 1.16i·5-s + (0.701 + 0.405i)6-s + (−0.168 − 0.0970i)7-s + 0.353i·8-s + (−0.156 + 0.271i)9-s + (0.412 + 0.713i)10-s + (−0.665 + 0.384i)11-s − 0.573·12-s + (0.868 + 0.496i)13-s + 0.137·14-s + (−1.15 + 0.668i)15-s + (−0.125 − 0.216i)16-s + (0.823 − 1.42i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00872 + 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.00872 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.496674 - 0.501025i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.496674 - 0.501025i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.73 - i)T \) |
| 13 | \( 1 + (-40.6 - 23.2i)T \) |
good | 3 | \( 1 + (2.97 + 5.15i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + 13.0iT - 125T^{2} \) |
| 7 | \( 1 + (3.11 + 1.79i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (24.2 - 14.0i)T + (665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-57.7 + 100. i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-112. - 64.7i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (87.4 + 151. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-109. - 189. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 53.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-109. + 63.3i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (222. - 128. i)T + (3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (14.2 - 24.6i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 108. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 215.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-339. - 196. i)T + (1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-112. + 194. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (120. - 69.7i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-550. - 317. i)T + (1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 - 946. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 198.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 692. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (701. - 405. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (996. + 575. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.55217940869456619879557918407, −16.11006269898289355408949764971, −14.01040961569509531698060595997, −12.68205948796474674372093533117, −11.75500982744109767579485711955, −9.845086754049143981238163275861, −8.328890091147746845120301271028, −6.95967192307855204579737419440, −5.34805856046314187243021651086, −1.01586042840148154240267235635,
3.40771921721703011462717059860, 5.86309079276432383201442935231, 7.85356776112401527960898669323, 9.851061972931510924248711029377, 10.62830855168434337398105627642, 11.56765774818054577882321110579, 13.52125328349379869361984674038, 15.30540520781556221976953112565, 15.99902211923655126458467074330, 17.39007303685020502064267282377