Properties

Label 2-26-1.1-c9-0-3
Degree $2$
Conductor $26$
Sign $1$
Analytic cond. $13.3909$
Root an. cond. $3.65936$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 159.·3-s + 256·4-s + 1.76e3·5-s − 2.55e3·6-s + 6.24e3·7-s − 4.09e3·8-s + 5.76e3·9-s − 2.82e4·10-s − 4.10e4·11-s + 4.08e4·12-s + 2.85e4·13-s − 9.98e4·14-s + 2.81e5·15-s + 6.55e4·16-s + 9.82e4·17-s − 9.21e4·18-s + 5.07e5·19-s + 4.52e5·20-s + 9.95e5·21-s + 6.57e5·22-s + 1.89e6·23-s − 6.53e5·24-s + 1.17e6·25-s − 4.56e5·26-s − 2.22e6·27-s + 1.59e6·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.13·3-s + 0.5·4-s + 1.26·5-s − 0.803·6-s + 0.982·7-s − 0.353·8-s + 0.292·9-s − 0.894·10-s − 0.845·11-s + 0.568·12-s + 0.277·13-s − 0.694·14-s + 1.43·15-s + 0.250·16-s + 0.285·17-s − 0.206·18-s + 0.892·19-s + 0.632·20-s + 1.11·21-s + 0.598·22-s + 1.41·23-s − 0.401·24-s + 0.599·25-s − 0.196·26-s − 0.804·27-s + 0.491·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.3909\)
Root analytic conductor: \(3.65936\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.464925324\)
\(L(\frac12)\) \(\approx\) \(2.464925324\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
13 \( 1 - 2.85e4T \)
good3 \( 1 - 159.T + 1.96e4T^{2} \)
5 \( 1 - 1.76e3T + 1.95e6T^{2} \)
7 \( 1 - 6.24e3T + 4.03e7T^{2} \)
11 \( 1 + 4.10e4T + 2.35e9T^{2} \)
17 \( 1 - 9.82e4T + 1.18e11T^{2} \)
19 \( 1 - 5.07e5T + 3.22e11T^{2} \)
23 \( 1 - 1.89e6T + 1.80e12T^{2} \)
29 \( 1 + 3.21e5T + 1.45e13T^{2} \)
31 \( 1 + 6.09e6T + 2.64e13T^{2} \)
37 \( 1 - 1.77e7T + 1.29e14T^{2} \)
41 \( 1 + 1.79e7T + 3.27e14T^{2} \)
43 \( 1 + 1.22e7T + 5.02e14T^{2} \)
47 \( 1 - 4.23e7T + 1.11e15T^{2} \)
53 \( 1 - 3.92e6T + 3.29e15T^{2} \)
59 \( 1 + 1.72e8T + 8.66e15T^{2} \)
61 \( 1 - 1.36e8T + 1.16e16T^{2} \)
67 \( 1 - 1.21e8T + 2.72e16T^{2} \)
71 \( 1 + 3.66e8T + 4.58e16T^{2} \)
73 \( 1 + 1.13e8T + 5.88e16T^{2} \)
79 \( 1 - 2.79e8T + 1.19e17T^{2} \)
83 \( 1 + 7.50e8T + 1.86e17T^{2} \)
89 \( 1 + 7.04e8T + 3.50e17T^{2} \)
97 \( 1 + 1.21e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.18073426154400514394683237250, −14.18396720879773502315784693174, −13.17800317553637696510245991683, −11.12931914039912323815731995571, −9.763188566684373617740618452605, −8.726340941141516650853413775151, −7.54660710920621517861496736662, −5.47438258662496058177250840780, −2.79540920494524299639557192985, −1.53739968747364262683868535690, 1.53739968747364262683868535690, 2.79540920494524299639557192985, 5.47438258662496058177250840780, 7.54660710920621517861496736662, 8.726340941141516650853413775151, 9.763188566684373617740618452605, 11.12931914039912323815731995571, 13.17800317553637696510245991683, 14.18396720879773502315784693174, 15.18073426154400514394683237250

Graph of the $Z$-function along the critical line