| L(s) = 1 | − 3.08i·2-s − 3.11·3-s − 5.53·4-s + 8.57·5-s + 9.62i·6-s − 4.55i·7-s + 4.72i·8-s + 0.725·9-s − 26.4i·10-s + (−9.41 − 5.68i)11-s + 17.2·12-s − 5.40i·13-s − 14.0·14-s − 26.7·15-s − 7.52·16-s − 30.3i·17-s + ⋯ |
| L(s) = 1 | − 1.54i·2-s − 1.03·3-s − 1.38·4-s + 1.71·5-s + 1.60i·6-s − 0.650i·7-s + 0.591i·8-s + 0.0805·9-s − 2.64i·10-s + (−0.856 − 0.516i)11-s + 1.43·12-s − 0.415i·13-s − 1.00·14-s − 1.78·15-s − 0.470·16-s − 1.78i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.856 - 0.516i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.269671 + 0.968965i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.269671 + 0.968965i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 + (9.41 + 5.68i)T \) |
| 23 | \( 1 - 4.79T \) |
| good | 2 | \( 1 + 3.08iT - 4T^{2} \) |
| 3 | \( 1 + 3.11T + 9T^{2} \) |
| 5 | \( 1 - 8.57T + 25T^{2} \) |
| 7 | \( 1 + 4.55iT - 49T^{2} \) |
| 13 | \( 1 + 5.40iT - 169T^{2} \) |
| 17 | \( 1 + 30.3iT - 289T^{2} \) |
| 19 | \( 1 - 32.2iT - 361T^{2} \) |
| 29 | \( 1 - 3.47iT - 841T^{2} \) |
| 31 | \( 1 + 51.2T + 961T^{2} \) |
| 37 | \( 1 + 47.7T + 1.36e3T^{2} \) |
| 41 | \( 1 + 68.9iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 3.80iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 55.3T + 2.20e3T^{2} \) |
| 53 | \( 1 - 45.7T + 2.80e3T^{2} \) |
| 59 | \( 1 - 43.9T + 3.48e3T^{2} \) |
| 61 | \( 1 - 17.4iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 78.2T + 4.48e3T^{2} \) |
| 71 | \( 1 - 15.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + 66.2iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 66.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 38.9iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 70.6T + 7.92e3T^{2} \) |
| 97 | \( 1 - 18.9T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04930134974160605068578260490, −10.44194577106220172006192388899, −9.931270395932595027697752513269, −8.875060055284271929969341219954, −7.05848444205688183104029123733, −5.68060529945723533621318722615, −5.13970465782908961028460223738, −3.30777956580342262207839596300, −2.00768603141348098634055050725, −0.57082405665431678478609623005,
2.17960155854401817524238328853, 4.97905292984170535141348905873, 5.46676864245316316617613341406, 6.26339723422382665522198279345, 6.92590664920782996150993463584, 8.469084332820306287234311479429, 9.252706948469484873204621636431, 10.35484263417313479667147408652, 11.28700154645245989400242354966, 12.78942184027934712763236185441