Properties

Label 253.3.c.a.208.6
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [253,3,Mod(208,253)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("253.208"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(253, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.6
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.39

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.08733i q^{2} -3.11851 q^{3} -5.53163 q^{4} +8.57758 q^{5} +9.62787i q^{6} -4.55083i q^{7} +4.72864i q^{8} +0.725091 q^{9} -26.4818i q^{10} +(-9.41847 - 5.68264i) q^{11} +17.2504 q^{12} -5.40393i q^{13} -14.0499 q^{14} -26.7492 q^{15} -7.52762 q^{16} -30.3632i q^{17} -2.23860i q^{18} +32.2837i q^{19} -47.4479 q^{20} +14.1918i q^{21} +(-17.5442 + 29.0780i) q^{22} +4.79583 q^{23} -14.7463i q^{24} +48.5748 q^{25} -16.6837 q^{26} +25.8054 q^{27} +25.1735i q^{28} +3.47506i q^{29} +82.5838i q^{30} -51.2579 q^{31} +42.1548i q^{32} +(29.3716 + 17.7213i) q^{33} -93.7412 q^{34} -39.0351i q^{35} -4.01093 q^{36} -47.7165 q^{37} +99.6706 q^{38} +16.8522i q^{39} +40.5603i q^{40} -68.9006i q^{41} +43.8148 q^{42} +3.80031i q^{43} +(52.0995 + 31.4342i) q^{44} +6.21952 q^{45} -14.8063i q^{46} -55.3907 q^{47} +23.4749 q^{48} +28.2900 q^{49} -149.967i q^{50} +94.6877i q^{51} +29.8925i q^{52} +45.7406 q^{53} -79.6698i q^{54} +(-80.7877 - 48.7432i) q^{55} +21.5192 q^{56} -100.677i q^{57} +10.7287 q^{58} +43.9724 q^{59} +147.967 q^{60} +17.4561i q^{61} +158.250i q^{62} -3.29976i q^{63} +100.036 q^{64} -46.3527i q^{65} +(54.7117 - 90.6799i) q^{66} +78.2581 q^{67} +167.958i q^{68} -14.9558 q^{69} -120.514 q^{70} +15.7894 q^{71} +3.42869i q^{72} -66.2206i q^{73} +147.317i q^{74} -151.481 q^{75} -178.582i q^{76} +(-25.8607 + 42.8618i) q^{77} +52.0284 q^{78} -66.9926i q^{79} -64.5687 q^{80} -87.0001 q^{81} -212.719 q^{82} +38.9831i q^{83} -78.5037i q^{84} -260.442i q^{85} +11.7328 q^{86} -10.8370i q^{87} +(26.8711 - 44.5366i) q^{88} +70.6051 q^{89} -19.2017i q^{90} -24.5924 q^{91} -26.5287 q^{92} +159.848 q^{93} +171.009i q^{94} +276.916i q^{95} -131.460i q^{96} +18.9107 q^{97} -87.3406i q^{98} +(-6.82925 - 4.12043i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.08733i 1.54367i −0.635825 0.771833i \(-0.719340\pi\)
0.635825 0.771833i \(-0.280660\pi\)
\(3\) −3.11851 −1.03950 −0.519751 0.854318i \(-0.673975\pi\)
−0.519751 + 0.854318i \(0.673975\pi\)
\(4\) −5.53163 −1.38291
\(5\) 8.57758 1.71552 0.857758 0.514054i \(-0.171857\pi\)
0.857758 + 0.514054i \(0.171857\pi\)
\(6\) 9.62787i 1.60465i
\(7\) 4.55083i 0.650118i −0.945694 0.325059i \(-0.894616\pi\)
0.945694 0.325059i \(-0.105384\pi\)
\(8\) 4.72864i 0.591080i
\(9\) 0.725091 0.0805656
\(10\) 26.4818i 2.64818i
\(11\) −9.41847 5.68264i −0.856225 0.516603i
\(12\) 17.2504 1.43753
\(13\) 5.40393i 0.415687i −0.978162 0.207844i \(-0.933355\pi\)
0.978162 0.207844i \(-0.0666445\pi\)
\(14\) −14.0499 −1.00357
\(15\) −26.7492 −1.78328
\(16\) −7.52762 −0.470476
\(17\) 30.3632i 1.78607i −0.449989 0.893034i \(-0.648572\pi\)
0.449989 0.893034i \(-0.351428\pi\)
\(18\) 2.23860i 0.124366i
\(19\) 32.2837i 1.69914i 0.527473 + 0.849572i \(0.323140\pi\)
−0.527473 + 0.849572i \(0.676860\pi\)
\(20\) −47.4479 −2.37240
\(21\) 14.1918i 0.675799i
\(22\) −17.5442 + 29.0780i −0.797463 + 1.32173i
\(23\) 4.79583 0.208514
\(24\) 14.7463i 0.614429i
\(25\) 48.5748 1.94299
\(26\) −16.6837 −0.641682
\(27\) 25.8054 0.955754
\(28\) 25.1735i 0.899052i
\(29\) 3.47506i 0.119830i 0.998203 + 0.0599148i \(0.0190829\pi\)
−0.998203 + 0.0599148i \(0.980917\pi\)
\(30\) 82.5838i 2.75279i
\(31\) −51.2579 −1.65348 −0.826741 0.562583i \(-0.809808\pi\)
−0.826741 + 0.562583i \(0.809808\pi\)
\(32\) 42.1548i 1.31734i
\(33\) 29.3716 + 17.7213i 0.890048 + 0.537010i
\(34\) −93.7412 −2.75709
\(35\) 39.0351i 1.11529i
\(36\) −4.01093 −0.111415
\(37\) −47.7165 −1.28964 −0.644818 0.764336i \(-0.723067\pi\)
−0.644818 + 0.764336i \(0.723067\pi\)
\(38\) 99.6706 2.62291
\(39\) 16.8522i 0.432108i
\(40\) 40.5603i 1.01401i
\(41\) 68.9006i 1.68050i −0.542198 0.840251i \(-0.682408\pi\)
0.542198 0.840251i \(-0.317592\pi\)
\(42\) 43.8148 1.04321
\(43\) 3.80031i 0.0883793i 0.999023 + 0.0441897i \(0.0140706\pi\)
−0.999023 + 0.0441897i \(0.985929\pi\)
\(44\) 52.0995 + 31.4342i 1.18408 + 0.714414i
\(45\) 6.21952 0.138212
\(46\) 14.8063i 0.321877i
\(47\) −55.3907 −1.17852 −0.589262 0.807942i \(-0.700582\pi\)
−0.589262 + 0.807942i \(0.700582\pi\)
\(48\) 23.4749 0.489061
\(49\) 28.2900 0.577347
\(50\) 149.967i 2.99933i
\(51\) 94.6877i 1.85662i
\(52\) 29.8925i 0.574856i
\(53\) 45.7406 0.863030 0.431515 0.902106i \(-0.357979\pi\)
0.431515 + 0.902106i \(0.357979\pi\)
\(54\) 79.6698i 1.47537i
\(55\) −80.7877 48.7432i −1.46887 0.886241i
\(56\) 21.5192 0.384272
\(57\) 100.677i 1.76626i
\(58\) 10.7287 0.184977
\(59\) 43.9724 0.745295 0.372647 0.927973i \(-0.378450\pi\)
0.372647 + 0.927973i \(0.378450\pi\)
\(60\) 147.967 2.46611
\(61\) 17.4561i 0.286165i 0.989711 + 0.143083i \(0.0457015\pi\)
−0.989711 + 0.143083i \(0.954299\pi\)
\(62\) 158.250i 2.55242i
\(63\) 3.29976i 0.0523772i
\(64\) 100.036 1.56305
\(65\) 46.3527i 0.713118i
\(66\) 54.7117 90.6799i 0.828965 1.37394i
\(67\) 78.2581 1.16803 0.584016 0.811742i \(-0.301481\pi\)
0.584016 + 0.811742i \(0.301481\pi\)
\(68\) 167.958i 2.46997i
\(69\) −14.9558 −0.216751
\(70\) −120.514 −1.72163
\(71\) 15.7894 0.222386 0.111193 0.993799i \(-0.464533\pi\)
0.111193 + 0.993799i \(0.464533\pi\)
\(72\) 3.42869i 0.0476207i
\(73\) 66.2206i 0.907132i −0.891223 0.453566i \(-0.850152\pi\)
0.891223 0.453566i \(-0.149848\pi\)
\(74\) 147.317i 1.99077i
\(75\) −151.481 −2.01975
\(76\) 178.582i 2.34976i
\(77\) −25.8607 + 42.8618i −0.335853 + 0.556647i
\(78\) 52.0284 0.667031
\(79\) 66.9926i 0.848008i −0.905660 0.424004i \(-0.860624\pi\)
0.905660 0.424004i \(-0.139376\pi\)
\(80\) −64.5687 −0.807109
\(81\) −87.0001 −1.07407
\(82\) −212.719 −2.59413
\(83\) 38.9831i 0.469676i 0.972034 + 0.234838i \(0.0754560\pi\)
−0.972034 + 0.234838i \(0.924544\pi\)
\(84\) 78.5037i 0.934567i
\(85\) 260.442i 3.06403i
\(86\) 11.7328 0.136428
\(87\) 10.8370i 0.124563i
\(88\) 26.8711 44.5366i 0.305354 0.506097i
\(89\) 70.6051 0.793316 0.396658 0.917966i \(-0.370170\pi\)
0.396658 + 0.917966i \(0.370170\pi\)
\(90\) 19.2017i 0.213353i
\(91\) −24.5924 −0.270246
\(92\) −26.5287 −0.288356
\(93\) 159.848 1.71880
\(94\) 171.009i 1.81925i
\(95\) 276.916i 2.91491i
\(96\) 131.460i 1.36938i
\(97\) 18.9107 0.194956 0.0974778 0.995238i \(-0.468922\pi\)
0.0974778 + 0.995238i \(0.468922\pi\)
\(98\) 87.3406i 0.891231i
\(99\) −6.82925 4.12043i −0.0689823 0.0416205i
\(100\) −268.698 −2.68698
\(101\) 90.7089i 0.898107i −0.893505 0.449054i \(-0.851761\pi\)
0.893505 0.449054i \(-0.148239\pi\)
\(102\) 292.333 2.86601
\(103\) 141.637 1.37512 0.687559 0.726128i \(-0.258682\pi\)
0.687559 + 0.726128i \(0.258682\pi\)
\(104\) 25.5533 0.245704
\(105\) 121.731i 1.15934i
\(106\) 141.216i 1.33223i
\(107\) 185.704i 1.73555i −0.496955 0.867777i \(-0.665548\pi\)
0.496955 0.867777i \(-0.334452\pi\)
\(108\) −142.746 −1.32172
\(109\) 10.8768i 0.0997869i 0.998755 + 0.0498934i \(0.0158882\pi\)
−0.998755 + 0.0498934i \(0.984112\pi\)
\(110\) −150.487 + 249.418i −1.36806 + 2.26744i
\(111\) 148.804 1.34058
\(112\) 34.2569i 0.305865i
\(113\) 42.5593 0.376631 0.188316 0.982109i \(-0.439697\pi\)
0.188316 + 0.982109i \(0.439697\pi\)
\(114\) −310.824 −2.72652
\(115\) 41.1366 0.357710
\(116\) 19.2227i 0.165713i
\(117\) 3.91834i 0.0334901i
\(118\) 135.757i 1.15049i
\(119\) −138.177 −1.16116
\(120\) 126.488i 1.05406i
\(121\) 56.4153 + 107.044i 0.466242 + 0.884657i
\(122\) 53.8927 0.441744
\(123\) 214.867i 1.74689i
\(124\) 283.540 2.28661
\(125\) 202.215 1.61772
\(126\) −10.1875 −0.0808529
\(127\) 28.0371i 0.220764i −0.993889 0.110382i \(-0.964792\pi\)
0.993889 0.110382i \(-0.0352075\pi\)
\(128\) 140.224i 1.09550i
\(129\) 11.8513i 0.0918705i
\(130\) −143.106 −1.10082
\(131\) 31.1135i 0.237507i 0.992924 + 0.118754i \(0.0378899\pi\)
−0.992924 + 0.118754i \(0.962110\pi\)
\(132\) −162.473 98.0279i −1.23085 0.742635i
\(133\) 146.918 1.10464
\(134\) 241.609i 1.80305i
\(135\) 221.348 1.63961
\(136\) 143.576 1.05571
\(137\) 159.064 1.16105 0.580526 0.814242i \(-0.302847\pi\)
0.580526 + 0.814242i \(0.302847\pi\)
\(138\) 46.1737i 0.334592i
\(139\) 21.2491i 0.152871i 0.997075 + 0.0764355i \(0.0243539\pi\)
−0.997075 + 0.0764355i \(0.975646\pi\)
\(140\) 215.927i 1.54234i
\(141\) 172.736 1.22508
\(142\) 48.7471i 0.343290i
\(143\) −30.7086 + 50.8968i −0.214745 + 0.355922i
\(144\) −5.45821 −0.0379042
\(145\) 29.8076i 0.205570i
\(146\) −204.445 −1.40031
\(147\) −88.2225 −0.600153
\(148\) 263.950 1.78344
\(149\) 199.750i 1.34060i 0.742089 + 0.670301i \(0.233835\pi\)
−0.742089 + 0.670301i \(0.766165\pi\)
\(150\) 467.672i 3.11782i
\(151\) 196.482i 1.30120i −0.759420 0.650601i \(-0.774517\pi\)
0.759420 0.650601i \(-0.225483\pi\)
\(152\) −152.658 −1.00433
\(153\) 22.0160i 0.143896i
\(154\) 132.329 + 79.8406i 0.859278 + 0.518445i
\(155\) −439.669 −2.83657
\(156\) 93.2201i 0.597565i
\(157\) 38.5450 0.245509 0.122755 0.992437i \(-0.460827\pi\)
0.122755 + 0.992437i \(0.460827\pi\)
\(158\) −206.829 −1.30904
\(159\) −142.642 −0.897122
\(160\) 361.586i 2.25991i
\(161\) 21.8250i 0.135559i
\(162\) 268.598i 1.65801i
\(163\) −98.7328 −0.605723 −0.302861 0.953035i \(-0.597942\pi\)
−0.302861 + 0.953035i \(0.597942\pi\)
\(164\) 381.132i 2.32398i
\(165\) 251.937 + 152.006i 1.52689 + 0.921250i
\(166\) 120.354 0.725024
\(167\) 140.960i 0.844075i −0.906578 0.422037i \(-0.861315\pi\)
0.906578 0.422037i \(-0.138685\pi\)
\(168\) −67.1078 −0.399451
\(169\) 139.798 0.827204
\(170\) −804.072 −4.72984
\(171\) 23.4086i 0.136893i
\(172\) 21.0219i 0.122220i
\(173\) 220.835i 1.27650i 0.769828 + 0.638252i \(0.220342\pi\)
−0.769828 + 0.638252i \(0.779658\pi\)
\(174\) −33.4574 −0.192284
\(175\) 221.056i 1.26317i
\(176\) 70.8987 + 42.7767i 0.402833 + 0.243050i
\(177\) −137.128 −0.774736
\(178\) 217.982i 1.22462i
\(179\) 175.763 0.981915 0.490958 0.871184i \(-0.336647\pi\)
0.490958 + 0.871184i \(0.336647\pi\)
\(180\) −34.4041 −0.191134
\(181\) −79.1478 −0.437281 −0.218640 0.975805i \(-0.570162\pi\)
−0.218640 + 0.975805i \(0.570162\pi\)
\(182\) 75.9248i 0.417169i
\(183\) 54.4369i 0.297469i
\(184\) 22.6778i 0.123249i
\(185\) −409.292 −2.21239
\(186\) 493.505i 2.65325i
\(187\) −172.543 + 285.975i −0.922689 + 1.52928i
\(188\) 306.400 1.62979
\(189\) 117.436i 0.621353i
\(190\) 854.933 4.49965
\(191\) 168.727 0.883388 0.441694 0.897166i \(-0.354378\pi\)
0.441694 + 0.897166i \(0.354378\pi\)
\(192\) −311.962 −1.62480
\(193\) 96.4351i 0.499664i −0.968289 0.249832i \(-0.919625\pi\)
0.968289 0.249832i \(-0.0803754\pi\)
\(194\) 58.3836i 0.300947i
\(195\) 144.551i 0.741288i
\(196\) −156.490 −0.798416
\(197\) 220.963i 1.12164i 0.827938 + 0.560820i \(0.189514\pi\)
−0.827938 + 0.560820i \(0.810486\pi\)
\(198\) −12.7211 + 21.0842i −0.0642481 + 0.106486i
\(199\) −186.161 −0.935482 −0.467741 0.883866i \(-0.654932\pi\)
−0.467741 + 0.883866i \(0.654932\pi\)
\(200\) 229.693i 1.14846i
\(201\) −244.049 −1.21417
\(202\) −280.048 −1.38638
\(203\) 15.8144 0.0779034
\(204\) 523.777i 2.56754i
\(205\) 591.000i 2.88293i
\(206\) 437.281i 2.12272i
\(207\) 3.47741 0.0167991
\(208\) 40.6787i 0.195571i
\(209\) 183.457 304.063i 0.877783 1.45485i
\(210\) 375.825 1.78964
\(211\) 216.846i 1.02771i −0.857878 0.513854i \(-0.828217\pi\)
0.857878 0.513854i \(-0.171783\pi\)
\(212\) −253.020 −1.19349
\(213\) −49.2394 −0.231171
\(214\) −573.331 −2.67912
\(215\) 32.5975i 0.151616i
\(216\) 122.024i 0.564927i
\(217\) 233.266i 1.07496i
\(218\) 33.5802 0.154038
\(219\) 206.509i 0.942966i
\(220\) 446.887 + 269.629i 2.03131 + 1.22559i
\(221\) −164.080 −0.742446
\(222\) 459.408i 2.06941i
\(223\) −61.4239 −0.275444 −0.137722 0.990471i \(-0.543978\pi\)
−0.137722 + 0.990471i \(0.543978\pi\)
\(224\) 191.839 0.856425
\(225\) 35.2212 0.156538
\(226\) 131.395i 0.581393i
\(227\) 110.064i 0.484864i 0.970168 + 0.242432i \(0.0779451\pi\)
−0.970168 + 0.242432i \(0.922055\pi\)
\(228\) 556.908i 2.44258i
\(229\) 100.135 0.437273 0.218636 0.975806i \(-0.429839\pi\)
0.218636 + 0.975806i \(0.429839\pi\)
\(230\) 127.002i 0.552184i
\(231\) 80.6468 133.665i 0.349120 0.578636i
\(232\) −16.4323 −0.0708289
\(233\) 162.034i 0.695426i 0.937601 + 0.347713i \(0.113042\pi\)
−0.937601 + 0.347713i \(0.886958\pi\)
\(234\) −12.0972 −0.0516975
\(235\) −475.118 −2.02178
\(236\) −243.239 −1.03067
\(237\) 208.917i 0.881507i
\(238\) 426.600i 1.79244i
\(239\) 182.769i 0.764725i −0.924012 0.382363i \(-0.875111\pi\)
0.924012 0.382363i \(-0.124889\pi\)
\(240\) 201.358 0.838992
\(241\) 35.0424i 0.145404i 0.997354 + 0.0727020i \(0.0231622\pi\)
−0.997354 + 0.0727020i \(0.976838\pi\)
\(242\) 330.479 174.173i 1.36562 0.719722i
\(243\) 39.0620 0.160749
\(244\) 96.5605i 0.395740i
\(245\) 242.660 0.990447
\(246\) 663.366 2.69661
\(247\) 174.459 0.706312
\(248\) 242.380i 0.977340i
\(249\) 121.569i 0.488230i
\(250\) 624.305i 2.49722i
\(251\) 137.664 0.548460 0.274230 0.961664i \(-0.411577\pi\)
0.274230 + 0.961664i \(0.411577\pi\)
\(252\) 18.2530i 0.0724327i
\(253\) −45.1694 27.2530i −0.178535 0.107719i
\(254\) −86.5598 −0.340787
\(255\) 812.191i 3.18506i
\(256\) −32.7751 −0.128028
\(257\) −140.243 −0.545693 −0.272847 0.962058i \(-0.587965\pi\)
−0.272847 + 0.962058i \(0.587965\pi\)
\(258\) −36.5889 −0.141817
\(259\) 217.150i 0.838415i
\(260\) 256.406i 0.986175i
\(261\) 2.51973i 0.00965415i
\(262\) 96.0576 0.366632
\(263\) 426.828i 1.62292i 0.584407 + 0.811461i \(0.301327\pi\)
−0.584407 + 0.811461i \(0.698673\pi\)
\(264\) −83.7978 + 138.888i −0.317416 + 0.526089i
\(265\) 392.343 1.48054
\(266\) 453.584i 1.70520i
\(267\) −220.183 −0.824654
\(268\) −432.895 −1.61528
\(269\) −223.004 −0.829010 −0.414505 0.910047i \(-0.636045\pi\)
−0.414505 + 0.910047i \(0.636045\pi\)
\(270\) 683.374i 2.53101i
\(271\) 3.60362i 0.0132975i −0.999978 0.00664875i \(-0.997884\pi\)
0.999978 0.00664875i \(-0.00211638\pi\)
\(272\) 228.562i 0.840302i
\(273\) 76.6915 0.280921
\(274\) 491.084i 1.79228i
\(275\) −457.501 276.033i −1.66364 1.00376i
\(276\) 82.7301 0.299747
\(277\) 48.9346i 0.176659i 0.996091 + 0.0883296i \(0.0281529\pi\)
−0.996091 + 0.0883296i \(0.971847\pi\)
\(278\) 65.6030 0.235982
\(279\) −37.1667 −0.133214
\(280\) 184.583 0.659224
\(281\) 351.503i 1.25090i 0.780264 + 0.625450i \(0.215085\pi\)
−0.780264 + 0.625450i \(0.784915\pi\)
\(282\) 533.294i 1.89111i
\(283\) 3.54558i 0.0125285i 0.999980 + 0.00626427i \(0.00199399\pi\)
−0.999980 + 0.00626427i \(0.998006\pi\)
\(284\) −87.3411 −0.307539
\(285\) 863.565i 3.03005i
\(286\) 157.135 + 94.8076i 0.549424 + 0.331495i
\(287\) −313.554 −1.09252
\(288\) 30.5661i 0.106132i
\(289\) −632.921 −2.19004
\(290\) 92.0259 0.317331
\(291\) −58.9732 −0.202657
\(292\) 366.308i 1.25448i
\(293\) 30.7033i 0.104789i −0.998626 0.0523946i \(-0.983315\pi\)
0.998626 0.0523946i \(-0.0166854\pi\)
\(294\) 272.372i 0.926437i
\(295\) 377.177 1.27856
\(296\) 225.634i 0.762278i
\(297\) −243.047 146.643i −0.818341 0.493746i
\(298\) 616.694 2.06944
\(299\) 25.9164i 0.0866768i
\(300\) 837.936 2.79312
\(301\) 17.2945 0.0574570
\(302\) −606.604 −2.00862
\(303\) 282.876i 0.933585i
\(304\) 243.020i 0.799407i
\(305\) 149.731i 0.490921i
\(306\) −67.9709 −0.222127
\(307\) 355.660i 1.15850i −0.815149 0.579251i \(-0.803345\pi\)
0.815149 0.579251i \(-0.196655\pi\)
\(308\) 143.052 237.096i 0.464453 0.769791i
\(309\) −441.697 −1.42944
\(310\) 1357.40i 4.37872i
\(311\) 255.425 0.821304 0.410652 0.911792i \(-0.365301\pi\)
0.410652 + 0.911792i \(0.365301\pi\)
\(312\) −79.6880 −0.255410
\(313\) 179.478 0.573411 0.286705 0.958019i \(-0.407440\pi\)
0.286705 + 0.958019i \(0.407440\pi\)
\(314\) 119.001i 0.378984i
\(315\) 28.3040i 0.0898538i
\(316\) 370.578i 1.17272i
\(317\) −59.9143 −0.189004 −0.0945021 0.995525i \(-0.530126\pi\)
−0.0945021 + 0.995525i \(0.530126\pi\)
\(318\) 440.385i 1.38486i
\(319\) 19.7475 32.7298i 0.0619044 0.102601i
\(320\) 858.062 2.68144
\(321\) 579.120i 1.80411i
\(322\) −67.3810 −0.209258
\(323\) 980.236 3.03479
\(324\) 481.252 1.48535
\(325\) 262.495i 0.807677i
\(326\) 304.821i 0.935034i
\(327\) 33.9193i 0.103729i
\(328\) 325.806 0.993311
\(329\) 252.073i 0.766180i
\(330\) 469.294 777.814i 1.42210 2.35701i
\(331\) −116.779 −0.352808 −0.176404 0.984318i \(-0.556446\pi\)
−0.176404 + 0.984318i \(0.556446\pi\)
\(332\) 215.640i 0.649518i
\(333\) −34.5988 −0.103900
\(334\) −435.192 −1.30297
\(335\) 671.265 2.00378
\(336\) 106.830i 0.317947i
\(337\) 93.9769i 0.278863i 0.990232 + 0.139432i \(0.0445275\pi\)
−0.990232 + 0.139432i \(0.955472\pi\)
\(338\) 431.601i 1.27693i
\(339\) −132.722 −0.391509
\(340\) 1440.67i 4.23726i
\(341\) 482.772 + 291.280i 1.41575 + 0.854194i
\(342\) 72.2702 0.211317
\(343\) 351.733i 1.02546i
\(344\) −17.9703 −0.0522392
\(345\) −128.285 −0.371840
\(346\) 681.792 1.97050
\(347\) 84.3932i 0.243208i −0.992579 0.121604i \(-0.961196\pi\)
0.992579 0.121604i \(-0.0388038\pi\)
\(348\) 59.9462i 0.172259i
\(349\) 365.606i 1.04758i −0.851847 0.523791i \(-0.824517\pi\)
0.851847 0.523791i \(-0.175483\pi\)
\(350\) −682.472 −1.94992
\(351\) 139.450i 0.397295i
\(352\) 239.551 397.034i 0.680541 1.12794i
\(353\) 323.926 0.917638 0.458819 0.888530i \(-0.348273\pi\)
0.458819 + 0.888530i \(0.348273\pi\)
\(354\) 423.361i 1.19593i
\(355\) 135.435 0.381507
\(356\) −390.561 −1.09708
\(357\) 430.907 1.20702
\(358\) 542.638i 1.51575i
\(359\) 121.369i 0.338075i −0.985610 0.169038i \(-0.945934\pi\)
0.985610 0.169038i \(-0.0540659\pi\)
\(360\) 29.4099i 0.0816941i
\(361\) −681.239 −1.88709
\(362\) 244.356i 0.675016i
\(363\) −175.932 333.816i −0.484660 0.919603i
\(364\) 136.036 0.373725
\(365\) 568.012i 1.55620i
\(366\) −168.065 −0.459194
\(367\) 86.3340 0.235243 0.117621 0.993059i \(-0.462473\pi\)
0.117621 + 0.993059i \(0.462473\pi\)
\(368\) −36.1012 −0.0981011
\(369\) 49.9592i 0.135391i
\(370\) 1263.62i 3.41519i
\(371\) 208.157i 0.561071i
\(372\) −884.221 −2.37694
\(373\) 339.832i 0.911079i 0.890216 + 0.455539i \(0.150554\pi\)
−0.890216 + 0.455539i \(0.849446\pi\)
\(374\) 882.899 + 532.697i 2.36069 + 1.42432i
\(375\) −630.609 −1.68162
\(376\) 261.922i 0.696602i
\(377\) 18.7790 0.0498116
\(378\) −362.563 −0.959162
\(379\) −231.363 −0.610457 −0.305228 0.952279i \(-0.598733\pi\)
−0.305228 + 0.952279i \(0.598733\pi\)
\(380\) 1531.80i 4.03104i
\(381\) 87.4339i 0.229485i
\(382\) 520.917i 1.36366i
\(383\) −519.802 −1.35719 −0.678593 0.734515i \(-0.737410\pi\)
−0.678593 + 0.734515i \(0.737410\pi\)
\(384\) 437.289i 1.13877i
\(385\) −221.822 + 367.651i −0.576161 + 0.954937i
\(386\) −297.727 −0.771314
\(387\) 2.75557i 0.00712033i
\(388\) −104.607 −0.269605
\(389\) −218.841 −0.562572 −0.281286 0.959624i \(-0.590761\pi\)
−0.281286 + 0.959624i \(0.590761\pi\)
\(390\) 446.277 1.14430
\(391\) 145.617i 0.372421i
\(392\) 133.773i 0.341258i
\(393\) 97.0276i 0.246889i
\(394\) 682.187 1.73144
\(395\) 574.635i 1.45477i
\(396\) 37.7768 + 22.7927i 0.0953961 + 0.0575572i
\(397\) 437.512 1.10204 0.551022 0.834491i \(-0.314238\pi\)
0.551022 + 0.834491i \(0.314238\pi\)
\(398\) 574.741i 1.44407i
\(399\) −458.164 −1.14828
\(400\) −365.653 −0.914132
\(401\) −610.664 −1.52285 −0.761427 0.648251i \(-0.775501\pi\)
−0.761427 + 0.648251i \(0.775501\pi\)
\(402\) 753.459i 1.87428i
\(403\) 276.994i 0.687331i
\(404\) 501.767i 1.24200i
\(405\) −746.250 −1.84259
\(406\) 48.8243i 0.120257i
\(407\) 449.417 + 271.156i 1.10422 + 0.666230i
\(408\) −447.744 −1.09741
\(409\) 448.266i 1.09600i −0.836477 0.548002i \(-0.815388\pi\)
0.836477 0.548002i \(-0.184612\pi\)
\(410\) −1824.61 −4.45028
\(411\) −496.042 −1.20692
\(412\) −783.484 −1.90166
\(413\) 200.111i 0.484529i
\(414\) 10.7359i 0.0259322i
\(415\) 334.381i 0.805737i
\(416\) 227.802 0.547601
\(417\) 66.2654i 0.158910i
\(418\) −938.745 566.392i −2.24580 1.35500i
\(419\) 778.121 1.85709 0.928546 0.371218i \(-0.121060\pi\)
0.928546 + 0.371218i \(0.121060\pi\)
\(420\) 673.371i 1.60326i
\(421\) 238.509 0.566529 0.283265 0.959042i \(-0.408583\pi\)
0.283265 + 0.959042i \(0.408583\pi\)
\(422\) −669.476 −1.58644
\(423\) −40.1633 −0.0949486
\(424\) 216.291i 0.510120i
\(425\) 1474.89i 3.47032i
\(426\) 152.018i 0.356851i
\(427\) 79.4396 0.186041
\(428\) 1027.25i 2.40011i
\(429\) 95.7650 158.722i 0.223228 0.369982i
\(430\) 100.639 0.234045
\(431\) 655.794i 1.52156i −0.649008 0.760781i \(-0.724816\pi\)
0.649008 0.760781i \(-0.275184\pi\)
\(432\) −194.253 −0.449660
\(433\) 349.972 0.808249 0.404125 0.914704i \(-0.367576\pi\)
0.404125 + 0.914704i \(0.367576\pi\)
\(434\) 720.170 1.65938
\(435\) 92.9552i 0.213690i
\(436\) 60.1662i 0.137996i
\(437\) 154.827i 0.354296i
\(438\) 637.563 1.45562
\(439\) 511.576i 1.16532i 0.812716 + 0.582660i \(0.197988\pi\)
−0.812716 + 0.582660i \(0.802012\pi\)
\(440\) 230.489 382.016i 0.523839 0.868218i
\(441\) 20.5128 0.0465143
\(442\) 506.571i 1.14609i
\(443\) 5.47559 0.0123603 0.00618013 0.999981i \(-0.498033\pi\)
0.00618013 + 0.999981i \(0.498033\pi\)
\(444\) −823.130 −1.85390
\(445\) 605.621 1.36095
\(446\) 189.636i 0.425193i
\(447\) 622.921i 1.39356i
\(448\) 455.244i 1.01617i
\(449\) −223.082 −0.496841 −0.248421 0.968652i \(-0.579911\pi\)
−0.248421 + 0.968652i \(0.579911\pi\)
\(450\) 108.739i 0.241643i
\(451\) −391.537 + 648.938i −0.868153 + 1.43889i
\(452\) −235.422 −0.520846
\(453\) 612.729i 1.35260i
\(454\) 339.804 0.748468
\(455\) −210.943 −0.463611
\(456\) 476.066 1.04400
\(457\) 526.851i 1.15285i 0.817151 + 0.576423i \(0.195552\pi\)
−0.817151 + 0.576423i \(0.804448\pi\)
\(458\) 309.152i 0.675004i
\(459\) 783.533i 1.70704i
\(460\) −227.552 −0.494679
\(461\) 262.848i 0.570169i 0.958502 + 0.285085i \(0.0920217\pi\)
−0.958502 + 0.285085i \(0.907978\pi\)
\(462\) −412.668 248.983i −0.893221 0.538925i
\(463\) −608.646 −1.31457 −0.657285 0.753642i \(-0.728295\pi\)
−0.657285 + 0.753642i \(0.728295\pi\)
\(464\) 26.1589i 0.0563770i
\(465\) 1371.11 2.94863
\(466\) 500.254 1.07351
\(467\) −261.094 −0.559087 −0.279543 0.960133i \(-0.590183\pi\)
−0.279543 + 0.960133i \(0.590183\pi\)
\(468\) 21.6748i 0.0463137i
\(469\) 356.139i 0.759358i
\(470\) 1466.85i 3.12095i
\(471\) −120.203 −0.255208
\(472\) 207.930i 0.440529i
\(473\) 21.5958 35.7931i 0.0456570 0.0756726i
\(474\) 644.997 1.36075
\(475\) 1568.18i 3.30142i
\(476\) 764.346 1.60577
\(477\) 33.1661 0.0695305
\(478\) −564.270 −1.18048
\(479\) 605.207i 1.26348i 0.775180 + 0.631741i \(0.217659\pi\)
−0.775180 + 0.631741i \(0.782341\pi\)
\(480\) 1127.61i 2.34919i
\(481\) 257.857i 0.536085i
\(482\) 108.187 0.224455
\(483\) 68.0614i 0.140914i
\(484\) −312.068 592.125i −0.644769 1.22340i
\(485\) 162.208 0.334449
\(486\) 120.598i 0.248143i
\(487\) −215.688 −0.442892 −0.221446 0.975173i \(-0.571078\pi\)
−0.221446 + 0.975173i \(0.571078\pi\)
\(488\) −82.5435 −0.169146
\(489\) 307.899 0.629650
\(490\) 749.171i 1.52892i
\(491\) 91.3882i 0.186127i −0.995660 0.0930633i \(-0.970334\pi\)
0.995660 0.0930633i \(-0.0296659\pi\)
\(492\) 1188.56i 2.41578i
\(493\) 105.514 0.214024
\(494\) 538.613i 1.09031i
\(495\) −58.5784 35.3433i −0.118340 0.0714006i
\(496\) 385.850 0.777924
\(497\) 71.8548i 0.144577i
\(498\) −375.325 −0.753664
\(499\) −721.156 −1.44520 −0.722601 0.691266i \(-0.757053\pi\)
−0.722601 + 0.691266i \(0.757053\pi\)
\(500\) −1118.58 −2.23715
\(501\) 439.586i 0.877418i
\(502\) 425.013i 0.846640i
\(503\) 358.812i 0.713345i 0.934230 + 0.356672i \(0.116089\pi\)
−0.934230 + 0.356672i \(0.883911\pi\)
\(504\) 15.6034 0.0309591
\(505\) 778.062i 1.54072i
\(506\) −84.1390 + 139.453i −0.166283 + 0.275599i
\(507\) −435.960 −0.859881
\(508\) 155.091i 0.305297i
\(509\) 112.771 0.221553 0.110777 0.993845i \(-0.464666\pi\)
0.110777 + 0.993845i \(0.464666\pi\)
\(510\) 2507.51 4.91668
\(511\) −301.358 −0.589743
\(512\) 459.707i 0.897865i
\(513\) 833.094i 1.62396i
\(514\) 432.977i 0.842369i
\(515\) 1214.90 2.35904
\(516\) 65.5569i 0.127048i
\(517\) 521.696 + 314.765i 1.00908 + 0.608830i
\(518\) 670.413 1.29423
\(519\) 688.676i 1.32693i
\(520\) 219.185 0.421510
\(521\) −762.917 −1.46433 −0.732166 0.681126i \(-0.761490\pi\)
−0.732166 + 0.681126i \(0.761490\pi\)
\(522\) 7.77925 0.0149028
\(523\) 396.267i 0.757680i 0.925462 + 0.378840i \(0.123677\pi\)
−0.925462 + 0.378840i \(0.876323\pi\)
\(524\) 172.108i 0.328450i
\(525\) 689.364i 1.31307i
\(526\) 1317.76 2.50525
\(527\) 1556.35i 2.95323i
\(528\) −221.098 133.400i −0.418746 0.252651i
\(529\) 23.0000 0.0434783
\(530\) 1211.29i 2.28546i
\(531\) 31.8840 0.0600451
\(532\) −812.693 −1.52762
\(533\) −372.334 −0.698563
\(534\) 679.777i 1.27299i
\(535\) 1592.89i 2.97737i
\(536\) 370.054i 0.690400i
\(537\) −548.118 −1.02070
\(538\) 688.487i 1.27972i
\(539\) −266.448 160.762i −0.494339 0.298259i
\(540\) −1224.41 −2.26743
\(541\) 419.347i 0.775134i 0.921842 + 0.387567i \(0.126684\pi\)
−0.921842 + 0.387567i \(0.873316\pi\)
\(542\) −11.1256 −0.0205269
\(543\) 246.823 0.454555
\(544\) 1279.95 2.35286
\(545\) 93.2963i 0.171186i
\(546\) 236.772i 0.433649i
\(547\) 795.866i 1.45497i 0.686126 + 0.727483i \(0.259310\pi\)
−0.686126 + 0.727483i \(0.740690\pi\)
\(548\) −879.882 −1.60562
\(549\) 12.6572i 0.0230551i
\(550\) −852.206 + 1412.46i −1.54947 + 2.56810i
\(551\) −112.188 −0.203608
\(552\) 70.7208i 0.128117i
\(553\) −304.872 −0.551305
\(554\) 151.077 0.272703
\(555\) 1276.38 2.29978
\(556\) 117.542i 0.211406i
\(557\) 651.681i 1.16998i −0.811039 0.584992i \(-0.801098\pi\)
0.811039 0.584992i \(-0.198902\pi\)
\(558\) 114.746i 0.205638i
\(559\) 20.5366 0.0367381
\(560\) 293.841i 0.524716i
\(561\) 538.076 891.814i 0.959137 1.58969i
\(562\) 1085.21 1.93097
\(563\) 484.108i 0.859871i 0.902860 + 0.429936i \(0.141464\pi\)
−0.902860 + 0.429936i \(0.858536\pi\)
\(564\) −955.512 −1.69417
\(565\) 365.056 0.646117
\(566\) 10.9464 0.0193399
\(567\) 395.922i 0.698275i
\(568\) 74.6624i 0.131448i
\(569\) 17.7336i 0.0311662i 0.999879 + 0.0155831i \(0.00496045\pi\)
−0.999879 + 0.0155831i \(0.995040\pi\)
\(570\) −2666.11 −4.67739
\(571\) 734.976i 1.28717i −0.765373 0.643586i \(-0.777446\pi\)
0.765373 0.643586i \(-0.222554\pi\)
\(572\) 169.868 281.542i 0.296973 0.492206i
\(573\) −526.177 −0.918284
\(574\) 968.047i 1.68649i
\(575\) 232.957 0.405142
\(576\) 72.5348 0.125928
\(577\) 63.1118 0.109379 0.0546896 0.998503i \(-0.482583\pi\)
0.0546896 + 0.998503i \(0.482583\pi\)
\(578\) 1954.04i 3.38069i
\(579\) 300.734i 0.519402i
\(580\) 164.884i 0.284283i
\(581\) 177.405 0.305345
\(582\) 182.070i 0.312835i
\(583\) −430.807 259.927i −0.738948 0.445844i
\(584\) 313.133 0.536187
\(585\) 33.6099i 0.0574528i
\(586\) −94.7912 −0.161760
\(587\) 440.955 0.751201 0.375601 0.926782i \(-0.377436\pi\)
0.375601 + 0.926782i \(0.377436\pi\)
\(588\) 488.014 0.829956
\(589\) 1654.80i 2.80950i
\(590\) 1164.47i 1.97368i
\(591\) 689.075i 1.16595i
\(592\) 359.192 0.606743
\(593\) 646.534i 1.09028i −0.838346 0.545138i \(-0.816477\pi\)
0.838346 0.545138i \(-0.183523\pi\)
\(594\) −452.734 + 750.368i −0.762179 + 1.26325i
\(595\) −1185.23 −1.99198
\(596\) 1104.94i 1.85393i
\(597\) 580.544 0.972436
\(598\) −80.0124 −0.133800
\(599\) −323.342 −0.539804 −0.269902 0.962888i \(-0.586991\pi\)
−0.269902 + 0.962888i \(0.586991\pi\)
\(600\) 716.299i 1.19383i
\(601\) 738.670i 1.22907i 0.788890 + 0.614535i \(0.210656\pi\)
−0.788890 + 0.614535i \(0.789344\pi\)
\(602\) 53.3940i 0.0886944i
\(603\) 56.7442 0.0941032
\(604\) 1086.86i 1.79944i
\(605\) 483.907 + 918.174i 0.799846 + 1.51764i
\(606\) 873.333 1.44114
\(607\) 704.658i 1.16089i 0.814301 + 0.580443i \(0.197121\pi\)
−0.814301 + 0.580443i \(0.802879\pi\)
\(608\) −1360.92 −2.23835
\(609\) −49.3173 −0.0809808
\(610\) 462.269 0.757818
\(611\) 299.327i 0.489898i
\(612\) 121.785i 0.198994i
\(613\) 703.847i 1.14820i −0.818785 0.574100i \(-0.805352\pi\)
0.818785 0.574100i \(-0.194648\pi\)
\(614\) −1098.04 −1.78834
\(615\) 1843.04i 2.99681i
\(616\) −202.678 122.286i −0.329023 0.198516i
\(617\) −475.675 −0.770948 −0.385474 0.922719i \(-0.625962\pi\)
−0.385474 + 0.922719i \(0.625962\pi\)
\(618\) 1363.67i 2.20658i
\(619\) 381.583 0.616451 0.308226 0.951313i \(-0.400265\pi\)
0.308226 + 0.951313i \(0.400265\pi\)
\(620\) 2432.08 3.92272
\(621\) 123.758 0.199289
\(622\) 788.583i 1.26782i
\(623\) 321.312i 0.515749i
\(624\) 126.857i 0.203296i
\(625\) 520.143 0.832229
\(626\) 554.107i 0.885155i
\(627\) −572.111 + 948.224i −0.912458 + 1.51232i
\(628\) −213.216 −0.339516
\(629\) 1448.82i 2.30338i
\(630\) −87.3837 −0.138704
\(631\) −61.8786 −0.0980644 −0.0490322 0.998797i \(-0.515614\pi\)
−0.0490322 + 0.998797i \(0.515614\pi\)
\(632\) 316.784 0.501241
\(633\) 676.237i 1.06830i
\(634\) 184.976i 0.291760i
\(635\) 240.490i 0.378725i
\(636\) 789.044 1.24064
\(637\) 152.877i 0.239996i
\(638\) −101.048 60.9671i −0.158382 0.0955597i
\(639\) 11.4487 0.0179167
\(640\) 1202.78i 1.87934i
\(641\) 451.782 0.704808 0.352404 0.935848i \(-0.385364\pi\)
0.352404 + 0.935848i \(0.385364\pi\)
\(642\) 1787.94 2.78495
\(643\) −195.516 −0.304068 −0.152034 0.988375i \(-0.548582\pi\)
−0.152034 + 0.988375i \(0.548582\pi\)
\(644\) 120.728i 0.187465i
\(645\) 101.655i 0.157605i
\(646\) 3026.32i 4.68470i
\(647\) 567.650 0.877357 0.438679 0.898644i \(-0.355447\pi\)
0.438679 + 0.898644i \(0.355447\pi\)
\(648\) 411.392i 0.634864i
\(649\) −414.153 249.879i −0.638140 0.385022i
\(650\) −810.410 −1.24678
\(651\) 727.442i 1.11742i
\(652\) 546.153 0.837658
\(653\) 1223.01 1.87291 0.936454 0.350792i \(-0.114087\pi\)
0.936454 + 0.350792i \(0.114087\pi\)
\(654\) −104.720 −0.160123
\(655\) 266.878i 0.407447i
\(656\) 518.657i 0.790636i
\(657\) 48.0159i 0.0730836i
\(658\) 778.234 1.18273
\(659\) 61.2330i 0.0929180i −0.998920 0.0464590i \(-0.985206\pi\)
0.998920 0.0464590i \(-0.0147937\pi\)
\(660\) −1393.62 840.841i −2.11155 1.27400i
\(661\) −492.520 −0.745113 −0.372556 0.928010i \(-0.621519\pi\)
−0.372556 + 0.928010i \(0.621519\pi\)
\(662\) 360.537i 0.544618i
\(663\) 511.686 0.771774
\(664\) −184.337 −0.277616
\(665\) 1260.20 1.89503
\(666\) 106.818i 0.160387i
\(667\) 16.6658i 0.0249862i
\(668\) 779.741i 1.16728i
\(669\) 191.551 0.286324
\(670\) 2072.42i 3.09316i
\(671\) 99.1965 164.410i 0.147834 0.245022i
\(672\) −598.252 −0.890256
\(673\) 834.108i 1.23939i −0.784844 0.619694i \(-0.787257\pi\)
0.784844 0.619694i \(-0.212743\pi\)
\(674\) 290.138 0.430472
\(675\) 1253.49 1.85702
\(676\) −773.308 −1.14395
\(677\) 975.616i 1.44109i −0.693410 0.720543i \(-0.743892\pi\)
0.693410 0.720543i \(-0.256108\pi\)
\(678\) 409.756i 0.604360i
\(679\) 86.0593i 0.126744i
\(680\) 1231.54 1.81109
\(681\) 343.236i 0.504017i
\(682\) 899.279 1490.48i 1.31859 2.18545i
\(683\) 312.097 0.456951 0.228475 0.973550i \(-0.426626\pi\)
0.228475 + 0.973550i \(0.426626\pi\)
\(684\) 129.488i 0.189310i
\(685\) 1364.38 1.99180
\(686\) −1085.92 −1.58297
\(687\) −312.273 −0.454546
\(688\) 28.6073i 0.0415804i
\(689\) 247.179i 0.358750i
\(690\) 396.058i 0.573997i
\(691\) 959.653 1.38879 0.694394 0.719595i \(-0.255672\pi\)
0.694394 + 0.719595i \(0.255672\pi\)
\(692\) 1221.58i 1.76529i
\(693\) −18.7513 + 31.0787i −0.0270582 + 0.0448466i
\(694\) −260.550 −0.375432
\(695\) 182.266i 0.262253i
\(696\) 51.2443 0.0736268
\(697\) −2092.04 −3.00149
\(698\) −1128.75 −1.61712
\(699\) 505.305i 0.722897i
\(700\) 1222.80i 1.74685i
\(701\) 1074.84i 1.53330i −0.642066 0.766650i \(-0.721922\pi\)
0.642066 0.766650i \(-0.278078\pi\)
\(702\) −430.530 −0.613291
\(703\) 1540.47i 2.19128i
\(704\) −942.182 568.465i −1.33833 0.807479i
\(705\) 1481.66 2.10164
\(706\) 1000.07i 1.41653i
\(707\) −412.800 −0.583876
\(708\) 758.542 1.07139
\(709\) −221.296 −0.312124 −0.156062 0.987747i \(-0.549880\pi\)
−0.156062 + 0.987747i \(0.549880\pi\)
\(710\) 418.132i 0.588919i
\(711\) 48.5757i 0.0683203i
\(712\) 333.866i 0.468913i
\(713\) −245.824 −0.344775
\(714\) 1330.35i 1.86324i
\(715\) −263.405 + 436.571i −0.368399 + 0.610589i
\(716\) −972.254 −1.35790
\(717\) 569.968i 0.794934i
\(718\) −374.706 −0.521875
\(719\) −355.387 −0.494279 −0.247140 0.968980i \(-0.579491\pi\)
−0.247140 + 0.968980i \(0.579491\pi\)
\(720\) −46.8182 −0.0650253
\(721\) 644.566i 0.893989i
\(722\) 2103.21i 2.91304i
\(723\) 109.280i 0.151148i
\(724\) 437.816 0.604719
\(725\) 168.800i 0.232828i
\(726\) −1030.60 + 543.159i −1.41956 + 0.748153i
\(727\) 547.274 0.752785 0.376392 0.926460i \(-0.377165\pi\)
0.376392 + 0.926460i \(0.377165\pi\)
\(728\) 116.288i 0.159737i
\(729\) 661.185 0.906976
\(730\) −1753.64 −2.40225
\(731\) 115.389 0.157851
\(732\) 301.125i 0.411372i
\(733\) 697.757i 0.951919i 0.879467 + 0.475960i \(0.157899\pi\)
−0.879467 + 0.475960i \(0.842101\pi\)
\(734\) 266.542i 0.363136i
\(735\) −756.736 −1.02957
\(736\) 202.167i 0.274684i
\(737\) −737.072 444.712i −1.00010 0.603409i
\(738\) −154.241 −0.208998
\(739\) 508.859i 0.688577i 0.938864 + 0.344289i \(0.111880\pi\)
−0.938864 + 0.344289i \(0.888120\pi\)
\(740\) 2264.05 3.05953
\(741\) −544.052 −0.734213
\(742\) −642.651 −0.866107
\(743\) 1219.41i 1.64120i −0.571502 0.820601i \(-0.693639\pi\)
0.571502 0.820601i \(-0.306361\pi\)
\(744\) 755.865i 1.01595i
\(745\) 1713.37i 2.29982i
\(746\) 1049.18 1.40640
\(747\) 28.2663i 0.0378398i
\(748\) 954.442 1581.90i 1.27599 2.11485i
\(749\) −845.107 −1.12831
\(750\) 1946.90i 2.59587i
\(751\) −577.056 −0.768383 −0.384191 0.923253i \(-0.625520\pi\)
−0.384191 + 0.923253i \(0.625520\pi\)
\(752\) 416.960 0.554468
\(753\) −429.305 −0.570126
\(754\) 57.9770i 0.0768926i
\(755\) 1685.34i 2.23223i
\(756\) 649.611i 0.859273i
\(757\) 135.068 0.178425 0.0892126 0.996013i \(-0.471565\pi\)
0.0892126 + 0.996013i \(0.471565\pi\)
\(758\) 714.295i 0.942341i
\(759\) 140.861 + 84.9886i 0.185588 + 0.111974i
\(760\) −1309.44 −1.72294
\(761\) 526.290i 0.691576i 0.938313 + 0.345788i \(0.112388\pi\)
−0.938313 + 0.345788i \(0.887612\pi\)
\(762\) 269.938 0.354249
\(763\) 49.4983 0.0648732
\(764\) −933.336 −1.22164
\(765\) 188.844i 0.246855i
\(766\) 1604.80i 2.09504i
\(767\) 237.624i 0.309809i
\(768\) 102.209 0.133085
\(769\) 838.578i 1.09048i 0.838281 + 0.545239i \(0.183561\pi\)
−0.838281 + 0.545239i \(0.816439\pi\)
\(770\) 1135.06 + 684.839i 1.47410 + 0.889401i
\(771\) 437.349 0.567250
\(772\) 533.443i 0.690988i
\(773\) 420.471 0.543947 0.271974 0.962305i \(-0.412324\pi\)
0.271974 + 0.962305i \(0.412324\pi\)
\(774\) 8.50736 0.0109914
\(775\) −2489.85 −3.21270
\(776\) 89.4219i 0.115234i
\(777\) 677.182i 0.871535i
\(778\) 675.634i 0.868424i
\(779\) 2224.37 2.85541
\(780\) 799.603i 1.02513i
\(781\) −148.712 89.7254i −0.190412 0.114885i
\(782\) −449.567 −0.574894
\(783\) 89.6752i 0.114528i
\(784\) −212.956 −0.271628
\(785\) 330.622 0.421175
\(786\) −299.556 −0.381115
\(787\) 1101.35i 1.39943i −0.714421 0.699717i \(-0.753310\pi\)
0.714421 0.699717i \(-0.246690\pi\)
\(788\) 1222.29i 1.55112i
\(789\) 1331.07i 1.68703i
\(790\) −1774.09 −2.24568
\(791\) 193.680i 0.244855i
\(792\) 19.4840 32.2930i 0.0246010 0.0407740i
\(793\) 94.3315 0.118955
\(794\) 1350.74i 1.70119i
\(795\) −1223.53 −1.53903
\(796\) 1029.77 1.29368
\(797\) 631.199 0.791968 0.395984 0.918257i \(-0.370404\pi\)
0.395984 + 0.918257i \(0.370404\pi\)
\(798\) 1414.50i 1.77256i
\(799\) 1681.84i 2.10493i
\(800\) 2047.66i 2.55958i
\(801\) 51.1951 0.0639140
\(802\) 1885.32i 2.35078i
\(803\) −376.308 + 623.697i −0.468627 + 0.776709i
\(804\) 1349.99 1.67909
\(805\) 187.206i 0.232554i
\(806\) 855.174 1.06101
\(807\) 695.439 0.861758
\(808\) 428.929 0.530853
\(809\) 965.150i 1.19302i 0.802607 + 0.596508i \(0.203446\pi\)
−0.802607 + 0.596508i \(0.796554\pi\)
\(810\) 2303.92i 2.84435i
\(811\) 8.87104i 0.0109384i −0.999985 0.00546920i \(-0.998259\pi\)
0.999985 0.00546920i \(-0.00174091\pi\)
\(812\) −87.4793 −0.107733
\(813\) 11.2379i 0.0138228i
\(814\) 837.147 1387.50i 1.02844 1.70454i
\(815\) −846.888 −1.03913
\(816\) 712.773i 0.873497i
\(817\) −122.688 −0.150169
\(818\) −1383.95 −1.69187
\(819\) −17.8317 −0.0217725
\(820\) 3269.19i 3.98682i
\(821\) 439.482i 0.535301i 0.963516 + 0.267650i \(0.0862472\pi\)
−0.963516 + 0.267650i \(0.913753\pi\)
\(822\) 1531.45i 1.86308i
\(823\) −658.887 −0.800592 −0.400296 0.916386i \(-0.631093\pi\)
−0.400296 + 0.916386i \(0.631093\pi\)
\(824\) 669.751i 0.812805i
\(825\) 1426.72 + 860.811i 1.72936 + 1.04341i
\(826\) −617.808 −0.747952
\(827\) 122.771i 0.148453i −0.997241 0.0742265i \(-0.976351\pi\)
0.997241 0.0742265i \(-0.0236488\pi\)
\(828\) −19.2357 −0.0232316
\(829\) −1558.02 −1.87939 −0.939696 0.342011i \(-0.888892\pi\)
−0.939696 + 0.342011i \(0.888892\pi\)
\(830\) 1032.35 1.24379
\(831\) 152.603i 0.183638i
\(832\) 540.585i 0.649742i
\(833\) 858.973i 1.03118i
\(834\) −204.583 −0.245304
\(835\) 1209.10i 1.44802i
\(836\) −1014.81 + 1681.97i −1.21389 + 2.01192i
\(837\) −1322.73 −1.58032
\(838\) 2402.32i 2.86673i
\(839\) −1125.17 −1.34108 −0.670540 0.741874i \(-0.733937\pi\)
−0.670540 + 0.741874i \(0.733937\pi\)
\(840\) −575.623 −0.685265
\(841\) 828.924 0.985641
\(842\) 736.356i 0.874532i
\(843\) 1096.17i 1.30031i
\(844\) 1199.51i 1.42122i
\(845\) 1199.12 1.41908
\(846\) 123.997i 0.146569i
\(847\) 487.136 256.736i 0.575132 0.303112i
\(848\) −344.318 −0.406035
\(849\) 11.0569i 0.0130235i
\(850\) −4553.46 −5.35701
\(851\) −228.840 −0.268908
\(852\) 272.374 0.319688
\(853\) 199.354i 0.233709i −0.993149 0.116855i \(-0.962719\pi\)
0.993149 0.116855i \(-0.0372812\pi\)
\(854\) 245.256i 0.287185i
\(855\) 200.789i 0.234841i
\(856\) 878.128 1.02585
\(857\) 1392.60i 1.62498i 0.582977 + 0.812488i \(0.301888\pi\)
−0.582977 + 0.812488i \(0.698112\pi\)
\(858\) −490.028 295.658i −0.571128 0.344590i
\(859\) 38.5364 0.0448619 0.0224310 0.999748i \(-0.492859\pi\)
0.0224310 + 0.999748i \(0.492859\pi\)
\(860\) 180.317i 0.209671i
\(861\) 977.822 1.13568
\(862\) −2024.65 −2.34879
\(863\) −38.1809 −0.0442421 −0.0221210 0.999755i \(-0.507042\pi\)
−0.0221210 + 0.999755i \(0.507042\pi\)
\(864\) 1087.82i 1.25905i
\(865\) 1894.23i 2.18986i
\(866\) 1080.48i 1.24767i
\(867\) 1973.77 2.27655
\(868\) 1290.34i 1.48657i
\(869\) −380.695 + 630.968i −0.438084 + 0.726086i
\(870\) −286.984 −0.329866
\(871\) 422.902i 0.485536i
\(872\) −51.4323 −0.0589820
\(873\) 13.7120 0.0157067
\(874\) 478.004 0.546915
\(875\) 920.245i 1.05171i
\(876\) 1142.33i 1.30403i
\(877\) 930.199i 1.06066i −0.847791 0.530330i \(-0.822068\pi\)
0.847791 0.530330i \(-0.177932\pi\)
\(878\) 1579.40 1.79887
\(879\) 95.7484i 0.108929i
\(880\) 608.139 + 366.921i 0.691067 + 0.416955i
\(881\) −36.0069 −0.0408705 −0.0204352 0.999791i \(-0.506505\pi\)
−0.0204352 + 0.999791i \(0.506505\pi\)
\(882\) 63.3299i 0.0718026i
\(883\) 1427.10 1.61620 0.808099 0.589047i \(-0.200497\pi\)
0.808099 + 0.589047i \(0.200497\pi\)
\(884\) 907.632 1.02673
\(885\) −1176.23 −1.32907
\(886\) 16.9050i 0.0190801i
\(887\) 529.743i 0.597230i 0.954374 + 0.298615i \(0.0965246\pi\)
−0.954374 + 0.298615i \(0.903475\pi\)
\(888\) 703.642i 0.792389i
\(889\) −127.592 −0.143523
\(890\) 1869.75i 2.10085i
\(891\) 819.408 + 494.390i 0.919650 + 0.554871i
\(892\) 339.774 0.380913
\(893\) 1788.22i 2.00248i
\(894\) −1923.17 −2.15119
\(895\) 1507.62 1.68449
\(896\) −638.133 −0.712202
\(897\) 80.8203i 0.0901007i
\(898\) 688.727i 0.766957i
\(899\) 178.124i 0.198136i
\(900\) −194.830 −0.216478
\(901\) 1388.83i 1.54143i
\(902\) 2003.49 + 1208.80i 2.22116 + 1.34014i
\(903\) −53.9332 −0.0597267
\(904\) 201.248i 0.222619i
\(905\) −678.897 −0.750162
\(906\) 1891.70 2.08797
\(907\) −957.437 −1.05561 −0.527805 0.849366i \(-0.676985\pi\)
−0.527805 + 0.849366i \(0.676985\pi\)
\(908\) 608.833i 0.670521i
\(909\) 65.7721i 0.0723566i
\(910\) 651.251i 0.715660i
\(911\) −47.3903 −0.0520201 −0.0260101 0.999662i \(-0.508280\pi\)
−0.0260101 + 0.999662i \(0.508280\pi\)
\(912\) 757.859i 0.830985i
\(913\) 221.527 367.162i 0.242636 0.402149i
\(914\) 1626.56 1.77961
\(915\) 466.937i 0.510313i
\(916\) −553.912 −0.604708
\(917\) 141.592 0.154408
\(918\) −2419.03 −2.63510
\(919\) 472.252i 0.513876i 0.966428 + 0.256938i \(0.0827135\pi\)
−0.966428 + 0.256938i \(0.917286\pi\)
\(920\) 194.520i 0.211435i
\(921\) 1109.13i 1.20427i
\(922\) 811.499 0.880151
\(923\) 85.3249i 0.0924430i
\(924\) −446.108 + 739.385i −0.482801 + 0.800200i
\(925\) −2317.82 −2.50575
\(926\) 1879.09i 2.02926i
\(927\) 102.700 0.110787
\(928\) −146.490 −0.157856
\(929\) 934.122 1.00551 0.502757 0.864428i \(-0.332319\pi\)
0.502757 + 0.864428i \(0.332319\pi\)
\(930\) 4233.08i 4.55169i
\(931\) 913.306i 0.980995i
\(932\) 896.313i 0.961709i
\(933\) −796.546 −0.853747
\(934\) 806.083i 0.863043i
\(935\) −1480.00 + 2452.97i −1.58289 + 2.62350i
\(936\) 18.5284 0.0197953
\(937\) 240.278i 0.256433i 0.991746 + 0.128217i \(0.0409253\pi\)
−0.991746 + 0.128217i \(0.959075\pi\)
\(938\) −1099.52 −1.17220
\(939\) −559.702 −0.596062
\(940\) 2628.17 2.79593
\(941\) 1176.41i 1.25017i 0.780555 + 0.625087i \(0.214937\pi\)
−0.780555 + 0.625087i \(0.785063\pi\)
\(942\) 371.106i 0.393955i
\(943\) 330.435i 0.350409i
\(944\) −331.007 −0.350643
\(945\) 1007.31i 1.06594i
\(946\) −110.505 66.6734i −0.116813 0.0704792i
\(947\) 1342.61 1.41775 0.708874 0.705335i \(-0.249203\pi\)
0.708874 + 0.705335i \(0.249203\pi\)
\(948\) 1155.65i 1.21904i
\(949\) −357.852 −0.377083
\(950\) 4841.48 5.09630
\(951\) 186.843 0.196470
\(952\) 653.391i 0.686335i
\(953\) 1412.09i 1.48173i −0.671653 0.740866i \(-0.734415\pi\)
0.671653 0.740866i \(-0.265585\pi\)
\(954\) 102.395i 0.107332i
\(955\) 1447.27 1.51547
\(956\) 1011.01i 1.05754i
\(957\) −61.5827 + 102.068i −0.0643498 + 0.106654i
\(958\) 1868.48 1.95039
\(959\) 723.873i 0.754820i
\(960\) −2675.87 −2.78737
\(961\) 1666.38 1.73400
\(962\) 796.090 0.827536
\(963\) 134.652i 0.139826i
\(964\) 193.841i 0.201080i
\(965\) 827.180i 0.857181i
\(966\) 210.128 0.217524
\(967\) 1803.09i 1.86462i 0.361660 + 0.932310i \(0.382210\pi\)
−0.361660 + 0.932310i \(0.617790\pi\)
\(968\) −506.170 + 266.768i −0.522903 + 0.275586i
\(969\) −3056.87 −3.15467
\(970\) 500.790i 0.516278i
\(971\) −105.210 −0.108352 −0.0541759 0.998531i \(-0.517253\pi\)
−0.0541759 + 0.998531i \(0.517253\pi\)
\(972\) −216.077 −0.222301
\(973\) 96.7009 0.0993842
\(974\) 665.901i 0.683677i
\(975\) 818.593i 0.839583i
\(976\) 131.403i 0.134634i
\(977\) 1159.08 1.18636 0.593181 0.805069i \(-0.297872\pi\)
0.593181 + 0.805069i \(0.297872\pi\)
\(978\) 950.587i 0.971970i
\(979\) −664.992 401.223i −0.679257 0.409830i
\(980\) −1342.30 −1.36970
\(981\) 7.88664i 0.00803939i
\(982\) −282.146 −0.287317
\(983\) 1365.47 1.38909 0.694545 0.719450i \(-0.255606\pi\)
0.694545 + 0.719450i \(0.255606\pi\)
\(984\) −1016.03 −1.03255
\(985\) 1895.33i 1.92419i
\(986\) 325.756i 0.330381i
\(987\) 786.092i 0.796446i
\(988\) −965.043 −0.976764
\(989\) 18.2256i 0.0184284i
\(990\) −109.116 + 180.851i −0.110219 + 0.182678i
\(991\) 323.509 0.326447 0.163223 0.986589i \(-0.447811\pi\)
0.163223 + 0.986589i \(0.447811\pi\)
\(992\) 2160.77i 2.17819i
\(993\) 364.177 0.366745
\(994\) −221.840 −0.223179
\(995\) −1596.81 −1.60483
\(996\) 672.475i 0.675176i
\(997\) 859.879i 0.862467i 0.902240 + 0.431233i \(0.141921\pi\)
−0.902240 + 0.431233i \(0.858079\pi\)
\(998\) 2226.45i 2.23091i
\(999\) −1231.34 −1.23257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.6 44
11.10 odd 2 inner 253.3.c.a.208.39 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.6 44 1.1 even 1 trivial
253.3.c.a.208.39 yes 44 11.10 odd 2 inner