| L(s) = 1 | − i·3-s + 3.09·5-s − 0.646i·7-s − 9-s − 1.41·11-s + (2.44 + 2.64i)13-s − 3.09i·15-s + 3.58·17-s − 1.11·19-s − 0.646·21-s + 3.46·23-s + 4.58·25-s + i·27-s − 0.913i·29-s + 1.93i·31-s + ⋯ |
| L(s) = 1 | − 0.577i·3-s + 1.38·5-s − 0.244i·7-s − 0.333·9-s − 0.426·11-s + (0.679 + 0.733i)13-s − 0.799i·15-s + 0.868·17-s − 0.256·19-s − 0.140·21-s + 0.722·23-s + 0.916·25-s + 0.192i·27-s − 0.169i·29-s + 0.348i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.479365897\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.479365897\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 13 | \( 1 + (-2.44 - 2.64i)T \) |
| good | 5 | \( 1 - 3.09T + 5T^{2} \) |
| 7 | \( 1 + 0.646iT - 7T^{2} \) |
| 11 | \( 1 + 1.41T + 11T^{2} \) |
| 17 | \( 1 - 3.58T + 17T^{2} \) |
| 19 | \( 1 + 1.11T + 19T^{2} \) |
| 23 | \( 1 - 3.46T + 23T^{2} \) |
| 29 | \( 1 + 0.913iT - 29T^{2} \) |
| 31 | \( 1 - 1.93iT - 31T^{2} \) |
| 37 | \( 1 - 4.89T + 37T^{2} \) |
| 41 | \( 1 - 5.95iT - 41T^{2} \) |
| 43 | \( 1 + 3.58iT - 43T^{2} \) |
| 47 | \( 1 + 3.74iT - 47T^{2} \) |
| 53 | \( 1 + 10.5iT - 53T^{2} \) |
| 59 | \( 1 - 9.30T + 59T^{2} \) |
| 61 | \( 1 + 0.913iT - 61T^{2} \) |
| 67 | \( 1 - 14.6T + 67T^{2} \) |
| 71 | \( 1 - 2.44iT - 71T^{2} \) |
| 73 | \( 1 - 5.65iT - 73T^{2} \) |
| 79 | \( 1 + 14.0T + 79T^{2} \) |
| 83 | \( 1 + 11.5T + 83T^{2} \) |
| 89 | \( 1 - 8.78iT - 89T^{2} \) |
| 97 | \( 1 + 7.89iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.787300332921031389459124081799, −8.194375023488725779161581716222, −7.12000055767154466507510309006, −6.58464080124348871676483211450, −5.74672774416558946285325200353, −5.21152256480048859462037776548, −3.99300561923520025436859530499, −2.84171330075421180220772995909, −1.95766721924540948733858172796, −1.04223969251850735309742281238,
1.09444932672403629886654121857, 2.37299598304877726588984264119, 3.12116941602349272089942300612, 4.23181652210171847935941809916, 5.39687494703056925439083086032, 5.63305389578296727986016442341, 6.44148492268506271820850723668, 7.52991509527388453587997596428, 8.394181974168399463814464069351, 9.128314017722084838062546411275