Properties

Label 2-2496-13.12-c1-0-32
Degree $2$
Conductor $2496$
Sign $0.832 + 0.554i$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2i·5-s − 2i·7-s + 9-s + 4i·11-s + (3 + 2i)13-s − 2i·15-s + 6·17-s − 2i·19-s − 2i·21-s + 4·23-s + 25-s + 27-s − 6·29-s + 2i·31-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894i·5-s − 0.755i·7-s + 0.333·9-s + 1.20i·11-s + (0.832 + 0.554i)13-s − 0.516i·15-s + 1.45·17-s − 0.458i·19-s − 0.436i·21-s + 0.834·23-s + 0.200·25-s + 0.192·27-s − 1.11·29-s + 0.359i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $0.832 + 0.554i$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2496} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ 0.832 + 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.513204143\)
\(L(\frac12)\) \(\approx\) \(2.513204143\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + (-3 - 2i)T \)
good5 \( 1 + 2iT - 5T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 - 4iT - 11T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 2iT - 31T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 + 6iT - 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 8iT - 59T^{2} \)
61 \( 1 - 14T + 61T^{2} \)
67 \( 1 + 14iT - 67T^{2} \)
71 \( 1 - 12iT - 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 6iT - 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.800231580658659328363023192315, −8.213538201092825098664994089744, −7.23962035746449246622976859874, −6.89039316028772967501975001159, −5.54737502406741146094560996999, −4.80001896832332784332943775094, −4.03550261496873049419374245494, −3.22856447382543588138950231249, −1.83705105003990006574639166354, −1.00358543246218362034925822145, 1.11790060136723994029831466346, 2.50711032602554537129368615231, 3.26690015409259486113514681698, 3.75025899673249040232327168009, 5.34244430060379398760697898457, 5.84069307961661612167513585185, 6.65856701668066034663351837868, 7.66617087559800084747141272140, 8.177821209662886058827199205650, 8.948100152779595639890198604817

Graph of the $Z$-function along the critical line