Properties

Label 2496.2.c.n.961.1
Level $2496$
Weight $2$
Character 2496.961
Analytic conductor $19.931$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(961,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,0,0,0,0,2,0,0,0,6,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2496.961
Dual form 2496.2.c.n.961.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -2.00000i q^{5} -2.00000i q^{7} +1.00000 q^{9} +4.00000i q^{11} +(3.00000 + 2.00000i) q^{13} -2.00000i q^{15} +6.00000 q^{17} -2.00000i q^{19} -2.00000i q^{21} +4.00000 q^{23} +1.00000 q^{25} +1.00000 q^{27} -6.00000 q^{29} +2.00000i q^{31} +4.00000i q^{33} -4.00000 q^{35} +8.00000i q^{37} +(3.00000 + 2.00000i) q^{39} -6.00000i q^{41} -4.00000 q^{43} -2.00000i q^{45} -8.00000i q^{47} +3.00000 q^{49} +6.00000 q^{51} -2.00000 q^{53} +8.00000 q^{55} -2.00000i q^{57} +8.00000i q^{59} +14.0000 q^{61} -2.00000i q^{63} +(4.00000 - 6.00000i) q^{65} -14.0000i q^{67} +4.00000 q^{69} +12.0000i q^{71} -4.00000i q^{73} +1.00000 q^{75} +8.00000 q^{77} +1.00000 q^{81} -12.0000i q^{85} -6.00000 q^{87} -6.00000i q^{89} +(4.00000 - 6.00000i) q^{91} +2.00000i q^{93} -4.00000 q^{95} -12.0000i q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{9} + 6 q^{13} + 12 q^{17} + 8 q^{23} + 2 q^{25} + 2 q^{27} - 12 q^{29} - 8 q^{35} + 6 q^{39} - 8 q^{43} + 6 q^{49} + 12 q^{51} - 4 q^{53} + 16 q^{55} + 28 q^{61} + 8 q^{65} + 8 q^{69}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.00000i 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 0 0
\(13\) 3.00000 + 2.00000i 0.832050 + 0.554700i
\(14\) 0 0
\(15\) 2.00000i 0.516398i
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i −0.973329 0.229416i \(-0.926318\pi\)
0.973329 0.229416i \(-0.0736815\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) 4.00000i 0.696311i
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 3.00000 + 2.00000i 0.480384 + 0.320256i
\(40\) 0 0
\(41\) 6.00000i 0.937043i −0.883452 0.468521i \(-0.844787\pi\)
0.883452 0.468521i \(-0.155213\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 2.00000i 0.298142i
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) 2.00000i 0.264906i
\(58\) 0 0
\(59\) 8.00000i 1.04151i 0.853706 + 0.520756i \(0.174350\pi\)
−0.853706 + 0.520756i \(0.825650\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) 4.00000 6.00000i 0.496139 0.744208i
\(66\) 0 0
\(67\) 14.0000i 1.71037i −0.518321 0.855186i \(-0.673443\pi\)
0.518321 0.855186i \(-0.326557\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 12.0000i 1.30158i
\(86\) 0 0
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) 6.00000i 0.635999i −0.948091 0.317999i \(-0.896989\pi\)
0.948091 0.317999i \(-0.103011\pi\)
\(90\) 0 0
\(91\) 4.00000 6.00000i 0.419314 0.628971i
\(92\) 0 0
\(93\) 2.00000i 0.207390i
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 12.0000i 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −16.0000 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(108\) 0 0
\(109\) 20.0000i 1.91565i −0.287348 0.957826i \(-0.592774\pi\)
0.287348 0.957826i \(-0.407226\pi\)
\(110\) 0 0
\(111\) 8.00000i 0.759326i
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 8.00000i 0.746004i
\(116\) 0 0
\(117\) 3.00000 + 2.00000i 0.277350 + 0.184900i
\(118\) 0 0
\(119\) 12.0000i 1.10004i
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 0 0
\(135\) 2.00000i 0.172133i
\(136\) 0 0
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 8.00000i 0.673722i
\(142\) 0 0
\(143\) −8.00000 + 12.0000i −0.668994 + 1.00349i
\(144\) 0 0
\(145\) 12.0000i 0.996546i
\(146\) 0 0
\(147\) 3.00000 0.247436
\(148\) 0 0
\(149\) 2.00000i 0.163846i 0.996639 + 0.0819232i \(0.0261062\pi\)
−0.996639 + 0.0819232i \(0.973894\pi\)
\(150\) 0 0
\(151\) 14.0000i 1.13930i −0.821886 0.569652i \(-0.807078\pi\)
0.821886 0.569652i \(-0.192922\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) −2.00000 −0.158610
\(160\) 0 0
\(161\) 8.00000i 0.630488i
\(162\) 0 0
\(163\) 22.0000i 1.72317i 0.507611 + 0.861586i \(0.330529\pi\)
−0.507611 + 0.861586i \(0.669471\pi\)
\(164\) 0 0
\(165\) 8.00000 0.622799
\(166\) 0 0
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 2.00000i 0.152944i
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 2.00000i 0.151186i
\(176\) 0 0
\(177\) 8.00000i 0.601317i
\(178\) 0 0
\(179\) −8.00000 −0.597948 −0.298974 0.954261i \(-0.596644\pi\)
−0.298974 + 0.954261i \(0.596644\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) 0 0
\(185\) 16.0000 1.17634
\(186\) 0 0
\(187\) 24.0000i 1.75505i
\(188\) 0 0
\(189\) 2.00000i 0.145479i
\(190\) 0 0
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 0 0
\(193\) 16.0000i 1.15171i −0.817554 0.575853i \(-0.804670\pi\)
0.817554 0.575853i \(-0.195330\pi\)
\(194\) 0 0
\(195\) 4.00000 6.00000i 0.286446 0.429669i
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 14.0000i 0.987484i
\(202\) 0 0
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 12.0000i 0.822226i
\(214\) 0 0
\(215\) 8.00000i 0.545595i
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 4.00000i 0.270295i
\(220\) 0 0
\(221\) 18.0000 + 12.0000i 1.21081 + 0.807207i
\(222\) 0 0
\(223\) 10.0000i 0.669650i 0.942280 + 0.334825i \(0.108677\pi\)
−0.942280 + 0.334825i \(0.891323\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 4.00000i 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i −0.750546 0.660819i \(-0.770209\pi\)
0.750546 0.660819i \(-0.229791\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 0 0
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000i 0.776215i 0.921614 + 0.388108i \(0.126871\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) 0 0
\(241\) 4.00000i 0.257663i 0.991667 + 0.128831i \(0.0411226\pi\)
−0.991667 + 0.128831i \(0.958877\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 6.00000i 0.383326i
\(246\) 0 0
\(247\) 4.00000 6.00000i 0.254514 0.381771i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) 12.0000i 0.751469i
\(256\) 0 0
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 4.00000i 0.245718i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) 22.0000i 1.33640i 0.743980 + 0.668202i \(0.232936\pi\)
−0.743980 + 0.668202i \(0.767064\pi\)
\(272\) 0 0
\(273\) 4.00000 6.00000i 0.242091 0.363137i
\(274\) 0 0
\(275\) 4.00000i 0.241209i
\(276\) 0 0
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) 0 0
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) 22.0000i 1.31241i 0.754583 + 0.656205i \(0.227839\pi\)
−0.754583 + 0.656205i \(0.772161\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 12.0000i 0.703452i
\(292\) 0 0
\(293\) 30.0000i 1.75262i 0.481749 + 0.876309i \(0.340002\pi\)
−0.481749 + 0.876309i \(0.659998\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) 0 0
\(297\) 4.00000i 0.232104i
\(298\) 0 0
\(299\) 12.0000 + 8.00000i 0.693978 + 0.462652i
\(300\) 0 0
\(301\) 8.00000i 0.461112i
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) 28.0000i 1.60328i
\(306\) 0 0
\(307\) 30.0000i 1.71219i −0.516818 0.856095i \(-0.672884\pi\)
0.516818 0.856095i \(-0.327116\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) 18.0000i 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) 24.0000i 1.34374i
\(320\) 0 0
\(321\) −16.0000 −0.893033
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) 3.00000 + 2.00000i 0.166410 + 0.110940i
\(326\) 0 0
\(327\) 20.0000i 1.10600i
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 6.00000i 0.329790i −0.986311 0.164895i \(-0.947272\pi\)
0.986311 0.164895i \(-0.0527285\pi\)
\(332\) 0 0
\(333\) 8.00000i 0.438397i
\(334\) 0 0
\(335\) −28.0000 −1.52980
\(336\) 0 0
\(337\) −34.0000 −1.85210 −0.926049 0.377403i \(-0.876817\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 8.00000i 0.430706i
\(346\) 0 0
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) 32.0000i 1.71292i 0.516213 + 0.856460i \(0.327341\pi\)
−0.516213 + 0.856460i \(0.672659\pi\)
\(350\) 0 0
\(351\) 3.00000 + 2.00000i 0.160128 + 0.106752i
\(352\) 0 0
\(353\) 10.0000i 0.532246i 0.963939 + 0.266123i \(0.0857428\pi\)
−0.963939 + 0.266123i \(0.914257\pi\)
\(354\) 0 0
\(355\) 24.0000 1.27379
\(356\) 0 0
\(357\) 12.0000i 0.635107i
\(358\) 0 0
\(359\) 8.00000i 0.422224i −0.977462 0.211112i \(-0.932292\pi\)
0.977462 0.211112i \(-0.0677085\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −8.00000 −0.418739
\(366\) 0 0
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 0 0
\(369\) 6.00000i 0.312348i
\(370\) 0 0
\(371\) 4.00000i 0.207670i
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 12.0000i 0.619677i
\(376\) 0 0
\(377\) −18.0000 12.0000i −0.927047 0.618031i
\(378\) 0 0
\(379\) 22.0000i 1.13006i 0.825069 + 0.565032i \(0.191136\pi\)
−0.825069 + 0.565032i \(0.808864\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 16.0000i 0.817562i 0.912633 + 0.408781i \(0.134046\pi\)
−0.912633 + 0.408781i \(0.865954\pi\)
\(384\) 0 0
\(385\) 16.0000i 0.815436i
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) 0 0
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) 34.0000i 1.69788i 0.528490 + 0.848939i \(0.322758\pi\)
−0.528490 + 0.848939i \(0.677242\pi\)
\(402\) 0 0
\(403\) −4.00000 + 6.00000i −0.199254 + 0.298881i
\(404\) 0 0
\(405\) 2.00000i 0.0993808i
\(406\) 0 0
\(407\) −32.0000 −1.58618
\(408\) 0 0
\(409\) 20.0000i 0.988936i 0.869196 + 0.494468i \(0.164637\pi\)
−0.869196 + 0.494468i \(0.835363\pi\)
\(410\) 0 0
\(411\) 14.0000i 0.690569i
\(412\) 0 0
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 4.00000i 0.194948i −0.995238 0.0974740i \(-0.968924\pi\)
0.995238 0.0974740i \(-0.0310763\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 28.0000i 1.35501i
\(428\) 0 0
\(429\) −8.00000 + 12.0000i −0.386244 + 0.579365i
\(430\) 0 0
\(431\) 16.0000i 0.770693i 0.922772 + 0.385346i \(0.125918\pi\)
−0.922772 + 0.385346i \(0.874082\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 12.0000i 0.575356i
\(436\) 0 0
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) 2.00000i 0.0945968i
\(448\) 0 0
\(449\) 26.0000i 1.22702i 0.789689 + 0.613508i \(0.210242\pi\)
−0.789689 + 0.613508i \(0.789758\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 14.0000i 0.657777i
\(454\) 0 0
\(455\) −12.0000 8.00000i −0.562569 0.375046i
\(456\) 0 0
\(457\) 20.0000i 0.935561i −0.883845 0.467780i \(-0.845054\pi\)
0.883845 0.467780i \(-0.154946\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) 18.0000i 0.838344i −0.907907 0.419172i \(-0.862320\pi\)
0.907907 0.419172i \(-0.137680\pi\)
\(462\) 0 0
\(463\) 22.0000i 1.02243i 0.859454 + 0.511213i \(0.170804\pi\)
−0.859454 + 0.511213i \(0.829196\pi\)
\(464\) 0 0
\(465\) 4.00000 0.185496
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) −28.0000 −1.29292
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) 2.00000i 0.0917663i
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 0 0
\(479\) 28.0000i 1.27935i −0.768644 0.639676i \(-0.779068\pi\)
0.768644 0.639676i \(-0.220932\pi\)
\(480\) 0 0
\(481\) −16.0000 + 24.0000i −0.729537 + 1.09431i
\(482\) 0 0
\(483\) 8.00000i 0.364013i
\(484\) 0 0
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) 6.00000i 0.271886i −0.990717 0.135943i \(-0.956594\pi\)
0.990717 0.135943i \(-0.0434064\pi\)
\(488\) 0 0
\(489\) 22.0000i 0.994874i
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) 18.0000i 0.805791i 0.915246 + 0.402895i \(0.131996\pi\)
−0.915246 + 0.402895i \(0.868004\pi\)
\(500\) 0 0
\(501\) 8.00000i 0.357414i
\(502\) 0 0
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) 12.0000i 0.533993i
\(506\) 0 0
\(507\) 5.00000 + 12.0000i 0.222058 + 0.532939i
\(508\) 0 0
\(509\) 26.0000i 1.15243i −0.817298 0.576215i \(-0.804529\pi\)
0.817298 0.576215i \(-0.195471\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 2.00000i 0.0883022i
\(514\) 0 0
\(515\) 16.0000i 0.705044i
\(516\) 0 0
\(517\) 32.0000 1.40736
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 0 0
\(525\) 2.00000i 0.0872872i
\(526\) 0 0
\(527\) 12.0000i 0.522728i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 8.00000i 0.347170i
\(532\) 0 0
\(533\) 12.0000 18.0000i 0.519778 0.779667i
\(534\) 0 0
\(535\) 32.0000i 1.38348i
\(536\) 0 0
\(537\) −8.00000 −0.345225
\(538\) 0 0
\(539\) 12.0000i 0.516877i
\(540\) 0 0
\(541\) 20.0000i 0.859867i 0.902861 + 0.429934i \(0.141463\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) −40.0000 −1.71341
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 12.0000i 0.511217i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 16.0000 0.679162
\(556\) 0 0
\(557\) 2.00000i 0.0847427i −0.999102 0.0423714i \(-0.986509\pi\)
0.999102 0.0423714i \(-0.0134913\pi\)
\(558\) 0 0
\(559\) −12.0000 8.00000i −0.507546 0.338364i
\(560\) 0 0
\(561\) 24.0000i 1.01328i
\(562\) 0 0
\(563\) −8.00000 −0.337160 −0.168580 0.985688i \(-0.553918\pi\)
−0.168580 + 0.985688i \(0.553918\pi\)
\(564\) 0 0
\(565\) 12.0000i 0.504844i
\(566\) 0 0
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) −20.0000 −0.835512
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 8.00000i 0.333044i 0.986038 + 0.166522i \(0.0532537\pi\)
−0.986038 + 0.166522i \(0.946746\pi\)
\(578\) 0 0
\(579\) 16.0000i 0.664937i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.00000i 0.331326i
\(584\) 0 0
\(585\) 4.00000 6.00000i 0.165380 0.248069i
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 6.00000i 0.246807i
\(592\) 0 0
\(593\) 22.0000i 0.903432i −0.892162 0.451716i \(-0.850812\pi\)
0.892162 0.451716i \(-0.149188\pi\)
\(594\) 0 0
\(595\) −24.0000 −0.983904
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 14.0000i 0.570124i
\(604\) 0 0
\(605\) 10.0000i 0.406558i
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0 0
\(609\) 12.0000i 0.486265i
\(610\) 0 0
\(611\) 16.0000 24.0000i 0.647291 0.970936i
\(612\) 0 0
\(613\) 32.0000i 1.29247i 0.763139 + 0.646234i \(0.223657\pi\)
−0.763139 + 0.646234i \(0.776343\pi\)
\(614\) 0 0
\(615\) −12.0000 −0.483887
\(616\) 0 0
\(617\) 42.0000i 1.69086i 0.534089 + 0.845428i \(0.320655\pi\)
−0.534089 + 0.845428i \(0.679345\pi\)
\(618\) 0 0
\(619\) 38.0000i 1.52735i −0.645601 0.763674i \(-0.723393\pi\)
0.645601 0.763674i \(-0.276607\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 8.00000 0.319489
\(628\) 0 0
\(629\) 48.0000i 1.91389i
\(630\) 0 0
\(631\) 2.00000i 0.0796187i 0.999207 + 0.0398094i \(0.0126751\pi\)
−0.999207 + 0.0398094i \(0.987325\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) 16.0000i 0.634941i
\(636\) 0 0
\(637\) 9.00000 + 6.00000i 0.356593 + 0.237729i
\(638\) 0 0
\(639\) 12.0000i 0.474713i
\(640\) 0 0
\(641\) −26.0000 −1.02694 −0.513469 0.858108i \(-0.671640\pi\)
−0.513469 + 0.858108i \(0.671640\pi\)
\(642\) 0 0
\(643\) 22.0000i 0.867595i −0.901010 0.433798i \(-0.857173\pi\)
0.901010 0.433798i \(-0.142827\pi\)
\(644\) 0 0
\(645\) 8.00000i 0.315000i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) −22.0000 −0.860927 −0.430463 0.902608i \(-0.641650\pi\)
−0.430463 + 0.902608i \(0.641650\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 8.00000i 0.311164i 0.987823 + 0.155582i \(0.0497253\pi\)
−0.987823 + 0.155582i \(0.950275\pi\)
\(662\) 0 0
\(663\) 18.0000 + 12.0000i 0.699062 + 0.466041i
\(664\) 0 0
\(665\) 8.00000i 0.310227i
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 10.0000i 0.386622i
\(670\) 0 0
\(671\) 56.0000i 2.16186i
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) −24.0000 −0.921035
\(680\) 0 0
\(681\) 4.00000i 0.153280i
\(682\) 0 0
\(683\) 36.0000i 1.37750i −0.724998 0.688751i \(-0.758159\pi\)
0.724998 0.688751i \(-0.241841\pi\)
\(684\) 0 0
\(685\) 28.0000 1.06983
\(686\) 0 0
\(687\) 20.0000i 0.763048i
\(688\) 0 0
\(689\) −6.00000 4.00000i −0.228582 0.152388i
\(690\) 0 0
\(691\) 10.0000i 0.380418i 0.981744 + 0.190209i \(0.0609166\pi\)
−0.981744 + 0.190209i \(0.939083\pi\)
\(692\) 0 0
\(693\) 8.00000 0.303895
\(694\) 0 0
\(695\) 40.0000i 1.51729i
\(696\) 0 0
\(697\) 36.0000i 1.36360i
\(698\) 0 0
\(699\) −22.0000 −0.832116
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 0 0
\(705\) −16.0000 −0.602595
\(706\) 0 0
\(707\) 12.0000i 0.451306i
\(708\) 0 0
\(709\) 44.0000i 1.65245i −0.563337 0.826227i \(-0.690483\pi\)
0.563337 0.826227i \(-0.309517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000i 0.299602i
\(714\) 0 0
\(715\) 24.0000 + 16.0000i 0.897549 + 0.598366i
\(716\) 0 0
\(717\) 12.0000i 0.448148i
\(718\) 0 0
\(719\) 4.00000 0.149175 0.0745874 0.997214i \(-0.476236\pi\)
0.0745874 + 0.997214i \(0.476236\pi\)
\(720\) 0 0
\(721\) 16.0000i 0.595871i
\(722\) 0 0
\(723\) 4.00000i 0.148762i
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 24.0000 0.890111 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 20.0000i 0.738717i −0.929287 0.369358i \(-0.879577\pi\)
0.929287 0.369358i \(-0.120423\pi\)
\(734\) 0 0
\(735\) 6.00000i 0.221313i
\(736\) 0 0
\(737\) 56.0000 2.06279
\(738\) 0 0
\(739\) 26.0000i 0.956425i 0.878244 + 0.478213i \(0.158715\pi\)
−0.878244 + 0.478213i \(0.841285\pi\)
\(740\) 0 0
\(741\) 4.00000 6.00000i 0.146944 0.220416i
\(742\) 0 0
\(743\) 4.00000i 0.146746i −0.997305 0.0733729i \(-0.976624\pi\)
0.997305 0.0733729i \(-0.0233763\pi\)
\(744\) 0 0
\(745\) 4.00000 0.146549
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 32.0000i 1.16925i
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) −28.0000 −1.02038
\(754\) 0 0
\(755\) −28.0000 −1.01902
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 16.0000i 0.580763i
\(760\) 0 0
\(761\) 18.0000i 0.652499i −0.945284 0.326250i \(-0.894215\pi\)
0.945284 0.326250i \(-0.105785\pi\)
\(762\) 0 0
\(763\) −40.0000 −1.44810
\(764\) 0 0
\(765\) 12.0000i 0.433861i
\(766\) 0 0
\(767\) −16.0000 + 24.0000i −0.577727 + 0.866590i
\(768\) 0 0
\(769\) 24.0000i 0.865462i 0.901523 + 0.432731i \(0.142450\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) 0 0
\(773\) 26.0000i 0.935155i 0.883952 + 0.467578i \(0.154873\pi\)
−0.883952 + 0.467578i \(0.845127\pi\)
\(774\) 0 0
\(775\) 2.00000i 0.0718421i
\(776\) 0 0
\(777\) 16.0000 0.573997
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −48.0000 −1.71758
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 4.00000i 0.142766i
\(786\) 0 0
\(787\) 38.0000i 1.35455i −0.735728 0.677277i \(-0.763160\pi\)
0.735728 0.677277i \(-0.236840\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 12.0000i 0.426671i
\(792\) 0 0
\(793\) 42.0000 + 28.0000i 1.49146 + 0.994309i
\(794\) 0 0
\(795\) 4.00000i 0.141865i
\(796\) 0 0
\(797\) −14.0000 −0.495905 −0.247953 0.968772i \(-0.579758\pi\)
−0.247953 + 0.968772i \(0.579758\pi\)
\(798\) 0 0
\(799\) 48.0000i 1.69812i
\(800\) 0 0
\(801\) 6.00000i 0.212000i
\(802\) 0 0
\(803\) 16.0000 0.564628
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) 10.0000 0.352017
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 2.00000i 0.0702295i −0.999383 0.0351147i \(-0.988820\pi\)
0.999383 0.0351147i \(-0.0111797\pi\)
\(812\) 0 0
\(813\) 22.0000i 0.771574i
\(814\) 0 0
\(815\) 44.0000 1.54125
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) 0 0
\(819\) 4.00000 6.00000i 0.139771 0.209657i
\(820\) 0 0
\(821\) 2.00000i 0.0698005i 0.999391 + 0.0349002i \(0.0111113\pi\)
−0.999391 + 0.0349002i \(0.988889\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 4.00000i 0.139262i
\(826\) 0 0
\(827\) 52.0000i 1.80822i 0.427303 + 0.904109i \(0.359464\pi\)
−0.427303 + 0.904109i \(0.640536\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) −14.0000 −0.485655
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 0 0
\(839\) 12.0000i 0.414286i 0.978311 + 0.207143i \(0.0664165\pi\)
−0.978311 + 0.207143i \(0.933583\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 22.0000i 0.757720i
\(844\) 0 0
\(845\) 24.0000 10.0000i 0.825625 0.344010i
\(846\) 0 0
\(847\) 10.0000i 0.343604i
\(848\) 0 0
\(849\) −28.0000 −0.960958
\(850\) 0 0
\(851\) 32.0000i 1.09695i
\(852\) 0 0
\(853\) 40.0000i 1.36957i 0.728743 + 0.684787i \(0.240105\pi\)
−0.728743 + 0.684787i \(0.759895\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) 0 0
\(863\) 24.0000i 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0 0
\(865\) 4.00000i 0.136004i
\(866\) 0 0
\(867\) 19.0000 0.645274
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 28.0000 42.0000i 0.948744 1.42312i
\(872\) 0 0
\(873\) 12.0000i 0.406138i
\(874\) 0 0
\(875\) −24.0000 −0.811348
\(876\) 0 0
\(877\) 40.0000i 1.35070i −0.737496 0.675352i \(-0.763992\pi\)
0.737496 0.675352i \(-0.236008\pi\)
\(878\) 0 0
\(879\) 30.0000i 1.01187i
\(880\) 0 0
\(881\) 10.0000 0.336909 0.168454 0.985709i \(-0.446122\pi\)
0.168454 + 0.985709i \(0.446122\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 16.0000 0.537834
\(886\) 0 0
\(887\) 20.0000 0.671534 0.335767 0.941945i \(-0.391004\pi\)
0.335767 + 0.941945i \(0.391004\pi\)
\(888\) 0 0
\(889\) 16.0000i 0.536623i
\(890\) 0 0
\(891\) 4.00000i 0.134005i
\(892\) 0 0
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 16.0000i 0.534821i
\(896\) 0 0
\(897\) 12.0000 + 8.00000i 0.400668 + 0.267112i
\(898\) 0 0
\(899\) 12.0000i 0.400222i
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 8.00000i 0.266223i
\(904\) 0 0
\(905\) 20.0000i 0.664822i
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 28.0000i 0.925651i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 30.0000i 0.988534i
\(922\) 0 0
\(923\) −24.0000 + 36.0000i −0.789970 + 1.18495i
\(924\) 0 0
\(925\) 8.00000i 0.263038i
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) 6.00000i 0.196854i −0.995144 0.0984268i \(-0.968619\pi\)
0.995144 0.0984268i \(-0.0313810\pi\)
\(930\) 0 0
\(931\) 6.00000i 0.196642i
\(932\) 0 0
\(933\) −12.0000 −0.392862
\(934\) 0 0
\(935\) 48.0000 1.56977
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) 10.0000i 0.325991i 0.986627 + 0.162995i \(0.0521156\pi\)
−0.986627 + 0.162995i \(0.947884\pi\)
\(942\) 0 0
\(943\) 24.0000i 0.781548i
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) 48.0000i 1.55979i 0.625910 + 0.779895i \(0.284728\pi\)
−0.625910 + 0.779895i \(0.715272\pi\)
\(948\) 0 0
\(949\) 8.00000 12.0000i 0.259691 0.389536i
\(950\) 0 0
\(951\) 18.0000i 0.583690i
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 40.0000i 1.29437i
\(956\) 0 0
\(957\) 24.0000i 0.775810i
\(958\) 0 0
\(959\) 28.0000 0.904167
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) −16.0000 −0.515593
\(964\) 0 0
\(965\) −32.0000 −1.03012
\(966\) 0 0
\(967\) 2.00000i 0.0643157i 0.999483 + 0.0321578i \(0.0102379\pi\)
−0.999483 + 0.0321578i \(0.989762\pi\)
\(968\) 0 0
\(969\) 12.0000i 0.385496i
\(970\) 0 0
\(971\) −4.00000 −0.128366 −0.0641831 0.997938i \(-0.520444\pi\)
−0.0641831 + 0.997938i \(0.520444\pi\)
\(972\) 0 0
\(973\) 40.0000i 1.28234i
\(974\) 0 0
\(975\) 3.00000 + 2.00000i 0.0960769 + 0.0640513i
\(976\) 0 0
\(977\) 42.0000i 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 20.0000i 0.638551i
\(982\) 0 0
\(983\) 4.00000i 0.127580i 0.997963 + 0.0637901i \(0.0203188\pi\)
−0.997963 + 0.0637901i \(0.979681\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) −16.0000 −0.509286
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 6.00000i 0.190404i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.0000 1.33015 0.665077 0.746775i \(-0.268399\pi\)
0.665077 + 0.746775i \(0.268399\pi\)
\(998\) 0 0
\(999\) 8.00000i 0.253109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.c.n.961.1 2
4.3 odd 2 2496.2.c.g.961.1 2
8.3 odd 2 312.2.c.b.25.2 yes 2
8.5 even 2 624.2.c.b.337.2 2
13.12 even 2 inner 2496.2.c.n.961.2 2
24.5 odd 2 1872.2.c.a.1585.1 2
24.11 even 2 936.2.c.a.649.1 2
52.51 odd 2 2496.2.c.g.961.2 2
104.5 odd 4 8112.2.a.k.1.1 1
104.21 odd 4 8112.2.a.e.1.1 1
104.51 odd 2 312.2.c.b.25.1 2
104.77 even 2 624.2.c.b.337.1 2
104.83 even 4 4056.2.a.p.1.1 1
104.99 even 4 4056.2.a.n.1.1 1
312.77 odd 2 1872.2.c.a.1585.2 2
312.155 even 2 936.2.c.a.649.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.c.b.25.1 2 104.51 odd 2
312.2.c.b.25.2 yes 2 8.3 odd 2
624.2.c.b.337.1 2 104.77 even 2
624.2.c.b.337.2 2 8.5 even 2
936.2.c.a.649.1 2 24.11 even 2
936.2.c.a.649.2 2 312.155 even 2
1872.2.c.a.1585.1 2 24.5 odd 2
1872.2.c.a.1585.2 2 312.77 odd 2
2496.2.c.g.961.1 2 4.3 odd 2
2496.2.c.g.961.2 2 52.51 odd 2
2496.2.c.n.961.1 2 1.1 even 1 trivial
2496.2.c.n.961.2 2 13.12 even 2 inner
4056.2.a.n.1.1 1 104.99 even 4
4056.2.a.p.1.1 1 104.83 even 4
8112.2.a.e.1.1 1 104.21 odd 4
8112.2.a.k.1.1 1 104.5 odd 4