Properties

Label 2-245-1.1-c7-0-5
Degree $2$
Conductor $245$
Sign $1$
Analytic cond. $76.5343$
Root an. cond. $8.74839$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.28·2-s − 79.7·3-s − 126.·4-s + 125·5-s − 102.·6-s − 326.·8-s + 4.17e3·9-s + 160.·10-s − 1.21e3·11-s + 1.00e4·12-s − 7.07e3·13-s − 9.96e3·15-s + 1.57e4·16-s + 3.34e3·17-s + 5.34e3·18-s − 2.21e4·19-s − 1.57e4·20-s − 1.55e3·22-s − 5.85e4·23-s + 2.60e4·24-s + 1.56e4·25-s − 9.06e3·26-s − 1.58e5·27-s − 2.06e5·29-s − 1.27e4·30-s − 1.77e5·31-s + 6.19e4·32-s + ⋯
L(s)  = 1  + 0.113·2-s − 1.70·3-s − 0.987·4-s + 0.447·5-s − 0.193·6-s − 0.225·8-s + 1.90·9-s + 0.0506·10-s − 0.275·11-s + 1.68·12-s − 0.892·13-s − 0.762·15-s + 0.961·16-s + 0.165·17-s + 0.216·18-s − 0.741·19-s − 0.441·20-s − 0.0311·22-s − 1.00·23-s + 0.384·24-s + 0.199·25-s − 0.101·26-s − 1.54·27-s − 1.57·29-s − 0.0864·30-s − 1.07·31-s + 0.334·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(76.5343\)
Root analytic conductor: \(8.74839\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.2186811757\)
\(L(\frac12)\) \(\approx\) \(0.2186811757\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 125T \)
7 \( 1 \)
good2 \( 1 - 1.28T + 128T^{2} \)
3 \( 1 + 79.7T + 2.18e3T^{2} \)
11 \( 1 + 1.21e3T + 1.94e7T^{2} \)
13 \( 1 + 7.07e3T + 6.27e7T^{2} \)
17 \( 1 - 3.34e3T + 4.10e8T^{2} \)
19 \( 1 + 2.21e4T + 8.93e8T^{2} \)
23 \( 1 + 5.85e4T + 3.40e9T^{2} \)
29 \( 1 + 2.06e5T + 1.72e10T^{2} \)
31 \( 1 + 1.77e5T + 2.75e10T^{2} \)
37 \( 1 + 2.84e5T + 9.49e10T^{2} \)
41 \( 1 + 6.27e5T + 1.94e11T^{2} \)
43 \( 1 + 1.64e5T + 2.71e11T^{2} \)
47 \( 1 - 4.49e5T + 5.06e11T^{2} \)
53 \( 1 + 7.30e5T + 1.17e12T^{2} \)
59 \( 1 + 1.42e6T + 2.48e12T^{2} \)
61 \( 1 - 2.66e5T + 3.14e12T^{2} \)
67 \( 1 - 2.95e6T + 6.06e12T^{2} \)
71 \( 1 - 9.21e5T + 9.09e12T^{2} \)
73 \( 1 + 4.25e6T + 1.10e13T^{2} \)
79 \( 1 - 6.28e6T + 1.92e13T^{2} \)
83 \( 1 - 9.17e6T + 2.71e13T^{2} \)
89 \( 1 + 2.42e5T + 4.42e13T^{2} \)
97 \( 1 - 2.59e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75474325417251231483165750204, −10.07751155365651647707130193715, −9.183587139701274221585739958974, −7.74533795078474453699793217054, −6.53954926636229877712461759055, −5.51384799984159806340256428432, −5.00937556091010031356489169891, −3.85170207970975579264029762638, −1.76982852257489053666622982073, −0.25530187865794903430457651483, 0.25530187865794903430457651483, 1.76982852257489053666622982073, 3.85170207970975579264029762638, 5.00937556091010031356489169891, 5.51384799984159806340256428432, 6.53954926636229877712461759055, 7.74533795078474453699793217054, 9.183587139701274221585739958974, 10.07751155365651647707130193715, 10.75474325417251231483165750204

Graph of the $Z$-function along the critical line