Properties

Label 245.8.a.c
Level $245$
Weight $8$
Character orbit 245.a
Self dual yes
Analytic conductor $76.534$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,8,Mod(1,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,20,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.5343312436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{19}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 10) q^{2} + (8 \beta - 10) q^{3} + (20 \beta + 48) q^{4} + 125 q^{5} + (70 \beta + 508) q^{6} + (120 \beta + 720) q^{8} + ( - 160 \beta + 2777) q^{9} + (125 \beta + 1250) q^{10} + (400 \beta + 2272) q^{11}+ \cdots + (747280 \beta + 1445344) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{2} - 20 q^{3} + 96 q^{4} + 250 q^{5} + 1016 q^{6} + 1440 q^{8} + 5554 q^{9} + 2500 q^{10} + 4544 q^{11} + 23360 q^{12} - 3540 q^{13} - 2500 q^{15} + 20352 q^{16} + 27340 q^{17} + 31220 q^{18}+ \cdots + 2890688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.35890
4.35890
1.28220 −79.7424 −126.356 125.000 −102.246 0 −326.136 4171.85 160.275
1.2 18.7178 59.7424 222.356 125.000 1118.25 0 1766.14 1382.15 2339.72
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.8.a.c 2
7.b odd 2 1 5.8.a.b 2
21.c even 2 1 45.8.a.h 2
28.d even 2 1 80.8.a.g 2
35.c odd 2 1 25.8.a.b 2
35.f even 4 2 25.8.b.c 4
56.e even 2 1 320.8.a.u 2
56.h odd 2 1 320.8.a.l 2
77.b even 2 1 605.8.a.d 2
105.g even 2 1 225.8.a.w 2
105.k odd 4 2 225.8.b.m 4
140.c even 2 1 400.8.a.bb 2
140.j odd 4 2 400.8.c.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.8.a.b 2 7.b odd 2 1
25.8.a.b 2 35.c odd 2 1
25.8.b.c 4 35.f even 4 2
45.8.a.h 2 21.c even 2 1
80.8.a.g 2 28.d even 2 1
225.8.a.w 2 105.g even 2 1
225.8.b.m 4 105.k odd 4 2
245.8.a.c 2 1.a even 1 1 trivial
320.8.a.l 2 56.h odd 2 1
320.8.a.u 2 56.e even 2 1
400.8.a.bb 2 140.c even 2 1
400.8.c.m 4 140.j odd 4 2
605.8.a.d 2 77.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(245))\):

\( T_{2}^{2} - 20T_{2} + 24 \) Copy content Toggle raw display
\( T_{3}^{2} + 20T_{3} - 4764 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 20T + 24 \) Copy content Toggle raw display
$3$ \( T^{2} + 20T - 4764 \) Copy content Toggle raw display
$5$ \( (T - 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4544 T - 6998016 \) Copy content Toggle raw display
$13$ \( T^{2} + 3540 T - 24961564 \) Copy content Toggle raw display
$17$ \( T^{2} - 27340 T + 80327844 \) Copy content Toggle raw display
$19$ \( T^{2} + 38760 T + 367802000 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 3840033636 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 27652933500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 22939401744 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 45775154396 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 227722158876 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 96985991164 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 154530884316 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 1213130224836 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 3614968086000 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 672038095516 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 4620664454244 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 275746164336 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1330152816836 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12272229720000 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 5699002341636 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1403196358500 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 18666217374716 \) Copy content Toggle raw display
show more
show less