Properties

Label 8-2340e4-1.1-c1e4-0-1
Degree $8$
Conductor $2.998\times 10^{13}$
Sign $1$
Analytic cond. $121891.$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 8·11-s − 8·19-s + 8·25-s − 8·29-s + 8·31-s − 24·41-s + 20·49-s − 32·55-s − 8·59-s + 16·61-s − 8·71-s − 40·79-s − 24·89-s − 32·95-s − 40·101-s − 24·109-s + 8·121-s + 20·125-s + 127-s + 131-s + 137-s + 139-s − 32·145-s + 149-s + 151-s + 32·155-s + ⋯
L(s)  = 1  + 1.78·5-s − 2.41·11-s − 1.83·19-s + 8/5·25-s − 1.48·29-s + 1.43·31-s − 3.74·41-s + 20/7·49-s − 4.31·55-s − 1.04·59-s + 2.04·61-s − 0.949·71-s − 4.50·79-s − 2.54·89-s − 3.28·95-s − 3.98·101-s − 2.29·109-s + 8/11·121-s + 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.65·145-s + 0.0819·149-s + 0.0813·151-s + 2.57·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(121891.\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3324772693\)
\(L(\frac12)\) \(\approx\) \(0.3324772693\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$D_{4}$ \( ( 1 + 4 T + 20 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
19$D_{4}$ \( ( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 - 4 T + 42 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 28 T^{2} - 522 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 12 T + 112 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 28 T^{2} + 2358 T^{4} + 28 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 72 T^{2} + 4850 T^{4} - 72 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 156 T^{2} + 11318 T^{4} - 156 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 4 T + 116 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
67$D_4\times C_2$ \( 1 - 68 T^{2} + 8598 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 4 T - 4 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 92 T^{2} + 11238 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
83$D_4\times C_2$ \( 1 - 248 T^{2} + 28290 T^{4} - 248 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 12 T + 160 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 158 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.28745792136328968471745054408, −6.24589704255022765035580789627, −5.87050275569049904232350478960, −5.63915955444519868142609573609, −5.48227113801218945643379468978, −5.37452976810041212452779027230, −5.37031009839671514420604166801, −5.07820959003222613731120105096, −4.65875489641995744274581863535, −4.61066552670091387209788828429, −4.28667270182059118852814008695, −3.93014523359381580524068960982, −3.86947874109693927900598170548, −3.76875834713987468846261772095, −3.05945200012905405283757465256, −2.85120293214824534801667493788, −2.73619529734347891320244880718, −2.56957424228578374966604196568, −2.54792253266930659633664207205, −1.95738092571347006588021651426, −1.63841629496502772080620280578, −1.62928941580069326528650220681, −1.38356181668985334176373164537, −0.58922800656703909911703653953, −0.10616266961978173243114885971, 0.10616266961978173243114885971, 0.58922800656703909911703653953, 1.38356181668985334176373164537, 1.62928941580069326528650220681, 1.63841629496502772080620280578, 1.95738092571347006588021651426, 2.54792253266930659633664207205, 2.56957424228578374966604196568, 2.73619529734347891320244880718, 2.85120293214824534801667493788, 3.05945200012905405283757465256, 3.76875834713987468846261772095, 3.86947874109693927900598170548, 3.93014523359381580524068960982, 4.28667270182059118852814008695, 4.61066552670091387209788828429, 4.65875489641995744274581863535, 5.07820959003222613731120105096, 5.37031009839671514420604166801, 5.37452976810041212452779027230, 5.48227113801218945643379468978, 5.63915955444519868142609573609, 5.87050275569049904232350478960, 6.24589704255022765035580789627, 6.28745792136328968471745054408

Graph of the $Z$-function along the critical line