Properties

Label 2340.2.h.d
Level $2340$
Weight $2$
Character orbit 2340.h
Analytic conductor $18.685$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(469,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_{2} + 1) q^{5} - 2 \beta_{2} q^{7} + (\beta_{3} - \beta_1 - 2) q^{11} - \beta_{2} q^{13} + 2 \beta_{2} q^{17} + ( - 2 \beta_{3} + 2 \beta_1 - 2) q^{19} + ( - 2 \beta_{3} - 2 \beta_1) q^{23}+ \cdots - 6 \beta_{2} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 8 q^{11} - 8 q^{19} - 8 q^{29} + 8 q^{31} + 8 q^{35} - 24 q^{41} + 12 q^{49} - 20 q^{55} - 8 q^{59} + 16 q^{61} + 4 q^{65} - 8 q^{71} - 40 q^{79} - 8 q^{85} - 24 q^{89} - 8 q^{91} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
469.1
−1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
1.22474 1.22474i
0 0 0 −0.224745 2.22474i 0 2.00000i 0 0 0
469.2 0 0 0 −0.224745 + 2.22474i 0 2.00000i 0 0 0
469.3 0 0 0 2.22474 0.224745i 0 2.00000i 0 0 0
469.4 0 0 0 2.22474 + 0.224745i 0 2.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.2.h.d 4
3.b odd 2 1 780.2.h.c 4
5.b even 2 1 inner 2340.2.h.d 4
12.b even 2 1 3120.2.l.j 4
15.d odd 2 1 780.2.h.c 4
15.e even 4 1 3900.2.a.o 2
15.e even 4 1 3900.2.a.t 2
60.h even 2 1 3120.2.l.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
780.2.h.c 4 3.b odd 2 1
780.2.h.c 4 15.d odd 2 1
2340.2.h.d 4 1.a even 1 1 trivial
2340.2.h.d 4 5.b even 2 1 inner
3120.2.l.j 4 12.b even 2 1
3120.2.l.j 4 60.h even 2 1
3900.2.a.o 2 15.e even 4 1
3900.2.a.t 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(2340, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T - 20)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$29$ \( (T + 2)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 4 T - 20)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 120T^{2} + 144 \) Copy content Toggle raw display
$41$ \( (T^{2} + 12 T + 30)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 200T^{2} + 8464 \) Copy content Toggle raw display
$47$ \( T^{4} + 116T^{2} + 2500 \) Copy content Toggle raw display
$53$ \( T^{4} + 56T^{2} + 400 \) Copy content Toggle raw display
$59$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$61$ \( (T - 4)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 200T^{2} + 8464 \) Copy content Toggle raw display
$71$ \( (T^{2} + 4 T - 146)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 200T^{2} + 8464 \) Copy content Toggle raw display
$79$ \( (T + 10)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 84T^{2} + 900 \) Copy content Toggle raw display
$89$ \( (T^{2} + 12 T - 18)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
show more
show less