L(s) = 1 | + (0.866 + 0.5i)2-s + (0.523 − 1.65i)3-s + (0.499 + 0.866i)4-s + (−0.419 + 0.242i)5-s + (1.27 − 1.16i)6-s + (4.37 + 2.52i)7-s + 0.999i·8-s + (−2.45 − 1.72i)9-s − 0.484·10-s + (−2.78 − 1.60i)11-s + (1.69 − 0.372i)12-s + (−0.722 − 3.53i)13-s + (2.52 + 4.37i)14-s + (0.180 + 0.819i)15-s + (−0.5 + 0.866i)16-s + 4.20·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.302 − 0.953i)3-s + (0.249 + 0.433i)4-s + (−0.187 + 0.108i)5-s + (0.521 − 0.476i)6-s + (1.65 + 0.955i)7-s + 0.353i·8-s + (−0.817 − 0.575i)9-s − 0.153·10-s + (−0.838 − 0.484i)11-s + (0.488 − 0.107i)12-s + (−0.200 − 0.979i)13-s + (0.675 + 1.16i)14-s + (0.0465 + 0.211i)15-s + (−0.125 + 0.216i)16-s + 1.01·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0628i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0628i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.92307 - 0.0604946i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.92307 - 0.0604946i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.523 + 1.65i)T \) |
| 13 | \( 1 + (0.722 + 3.53i)T \) |
good | 5 | \( 1 + (0.419 - 0.242i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-4.37 - 2.52i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.78 + 1.60i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 4.20T + 17T^{2} \) |
| 19 | \( 1 - 3.21iT - 19T^{2} \) |
| 23 | \( 1 + (3.13 + 5.43i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.29 - 3.97i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.61 - 3.24i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2.08iT - 37T^{2} \) |
| 41 | \( 1 + (9.57 - 5.52i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.73 + 8.19i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.57 + 2.64i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6.41T + 53T^{2} \) |
| 59 | \( 1 + (-3.13 + 1.81i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.500 + 0.867i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.936 + 0.540i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.63iT - 71T^{2} \) |
| 73 | \( 1 + 0.325iT - 73T^{2} \) |
| 79 | \( 1 + (-3.91 + 6.78i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.08 + 2.93i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 8.42iT - 89T^{2} \) |
| 97 | \( 1 + (-11.3 - 6.52i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.27444030076020764473218228433, −11.58509894114505109941267893331, −10.53446899025008018972216725863, −8.637791747780199068349178443578, −8.065947964994334408109876822105, −7.38140907671964469391248692635, −5.72883437381789538563360127431, −5.26295149731319636375822914671, −3.30630974924463602944335801523, −1.95972902279580151126550800761,
2.05011077504871460122076348568, 3.84797188711701029667793640264, 4.62317197358608319688315251680, 5.45805951283634357084208518174, 7.41795674966070994729076327883, 8.139444100513985447808909912517, 9.582225356780364229103601943021, 10.38788890916419891068670479641, 11.30445126111200316527822951344, 11.83908769594363061288719182794