L(s) = 1 | + (0.866 − 0.5i)2-s + (0.523 + 1.65i)3-s + (0.499 − 0.866i)4-s + (−0.419 − 0.242i)5-s + (1.27 + 1.16i)6-s + (4.37 − 2.52i)7-s − 0.999i·8-s + (−2.45 + 1.72i)9-s − 0.484·10-s + (−2.78 + 1.60i)11-s + (1.69 + 0.372i)12-s + (−0.722 + 3.53i)13-s + (2.52 − 4.37i)14-s + (0.180 − 0.819i)15-s + (−0.5 − 0.866i)16-s + 4.20·17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.302 + 0.953i)3-s + (0.249 − 0.433i)4-s + (−0.187 − 0.108i)5-s + (0.521 + 0.476i)6-s + (1.65 − 0.955i)7-s − 0.353i·8-s + (−0.817 + 0.575i)9-s − 0.153·10-s + (−0.838 + 0.484i)11-s + (0.488 + 0.107i)12-s + (−0.200 + 0.979i)13-s + (0.675 − 1.16i)14-s + (0.0465 − 0.211i)15-s + (−0.125 − 0.216i)16-s + 1.01·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0628i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0628i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.92307 + 0.0604946i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.92307 + 0.0604946i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.523 - 1.65i)T \) |
| 13 | \( 1 + (0.722 - 3.53i)T \) |
good | 5 | \( 1 + (0.419 + 0.242i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-4.37 + 2.52i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.78 - 1.60i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 4.20T + 17T^{2} \) |
| 19 | \( 1 + 3.21iT - 19T^{2} \) |
| 23 | \( 1 + (3.13 - 5.43i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.29 + 3.97i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.61 + 3.24i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2.08iT - 37T^{2} \) |
| 41 | \( 1 + (9.57 + 5.52i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.73 - 8.19i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.57 - 2.64i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6.41T + 53T^{2} \) |
| 59 | \( 1 + (-3.13 - 1.81i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.500 - 0.867i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.936 - 0.540i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.63iT - 71T^{2} \) |
| 73 | \( 1 - 0.325iT - 73T^{2} \) |
| 79 | \( 1 + (-3.91 - 6.78i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.08 - 2.93i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 8.42iT - 89T^{2} \) |
| 97 | \( 1 + (-11.3 + 6.52i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83908769594363061288719182794, −11.30445126111200316527822951344, −10.38788890916419891068670479641, −9.582225356780364229103601943021, −8.139444100513985447808909912517, −7.41795674966070994729076327883, −5.45805951283634357084208518174, −4.62317197358608319688315251680, −3.84797188711701029667793640264, −2.05011077504871460122076348568,
1.95972902279580151126550800761, 3.30630974924463602944335801523, 5.26295149731319636375822914671, 5.72883437381789538563360127431, 7.38140907671964469391248692635, 8.065947964994334408109876822105, 8.637791747780199068349178443578, 10.53446899025008018972216725863, 11.58509894114505109941267893331, 12.27444030076020764473218228433