Properties

Label 16-2312e8-1.1-c0e8-0-1
Degree $16$
Conductor $8.164\times 10^{26}$
Sign $1$
Analytic cond. $3.14166$
Root an. cond. $1.07416$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 10·16-s − 20·64-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  − 4·4-s + 10·16-s − 20·64-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 17^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 17^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{24} \cdot 17^{16}\)
Sign: $1$
Analytic conductor: \(3.14166\)
Root analytic conductor: \(1.07416\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{24} \cdot 17^{16} ,\ ( \ : [0]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2844419359\)
\(L(\frac12)\) \(\approx\) \(0.2844419359\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T^{2} )^{4} \)
17 \( 1 \)
good3 \( ( 1 + T^{8} )^{2} \)
5 \( ( 1 + T^{4} )^{4} \)
7 \( ( 1 + T^{4} )^{4} \)
11 \( ( 1 + T^{8} )^{2} \)
13 \( ( 1 - T )^{8}( 1 + T )^{8} \)
19 \( ( 1 - T )^{8}( 1 + T )^{8} \)
23 \( ( 1 + T^{4} )^{4} \)
29 \( ( 1 + T^{4} )^{4} \)
31 \( ( 1 + T^{4} )^{4} \)
37 \( ( 1 + T^{4} )^{4} \)
41 \( ( 1 + T^{8} )^{2} \)
43 \( ( 1 + T^{4} )^{4} \)
47 \( ( 1 - T )^{8}( 1 + T )^{8} \)
53 \( ( 1 + T^{2} )^{8} \)
59 \( ( 1 + T^{4} )^{4} \)
61 \( ( 1 + T^{4} )^{4} \)
67 \( ( 1 + T^{4} )^{4} \)
71 \( ( 1 + T^{4} )^{4} \)
73 \( ( 1 + T^{8} )^{2} \)
79 \( ( 1 + T^{4} )^{4} \)
83 \( ( 1 + T^{4} )^{4} \)
89 \( ( 1 + T^{4} )^{4} \)
97 \( ( 1 + T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.91041145608858048876225568197, −3.88812081554661159980427203610, −3.85945412540991370234888401435, −3.77631790482260275895402657340, −3.54367551883035712019517088604, −3.44866184685098969778769136389, −3.35807395878694034466747875955, −3.07635294742206398525582105559, −3.02234452380382829254359401375, −2.99174891031813312693217835031, −2.97468205553403247791573493656, −2.76874431148807665957516071096, −2.70287357465622842631434955215, −2.13356710857894642333339238677, −2.13315064029671857441814791339, −2.05945636248907190596913120402, −2.03474123137513692719430069722, −1.82297219849157610232792367830, −1.44934770163841037696702416150, −1.37550194645472973277388915930, −1.09959386868838736350863992907, −1.09607531357877012942973868086, −0.927467098985324896442934865830, −0.61474123050674484677226533537, −0.31573344612786096436728601680, 0.31573344612786096436728601680, 0.61474123050674484677226533537, 0.927467098985324896442934865830, 1.09607531357877012942973868086, 1.09959386868838736350863992907, 1.37550194645472973277388915930, 1.44934770163841037696702416150, 1.82297219849157610232792367830, 2.03474123137513692719430069722, 2.05945636248907190596913120402, 2.13315064029671857441814791339, 2.13356710857894642333339238677, 2.70287357465622842631434955215, 2.76874431148807665957516071096, 2.97468205553403247791573493656, 2.99174891031813312693217835031, 3.02234452380382829254359401375, 3.07635294742206398525582105559, 3.35807395878694034466747875955, 3.44866184685098969778769136389, 3.54367551883035712019517088604, 3.77631790482260275895402657340, 3.85945412540991370234888401435, 3.88812081554661159980427203610, 3.91041145608858048876225568197

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.