Properties

Label 2312.1.j.c
Level $2312$
Weight $1$
Character orbit 2312.j
Analytic conductor $1.154$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,1,Mod(251,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.251"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2312.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.15383830921\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 136)
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.1680747204608.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{16}^{4} q^{2} + ( - \zeta_{16}^{7} + \zeta_{16}^{5}) q^{3} - q^{4} + (\zeta_{16}^{3} - \zeta_{16}) q^{6} - \zeta_{16}^{4} q^{8} + ( - \zeta_{16}^{6} + \cdots - \zeta_{16}^{2}) q^{9} + ( - \zeta_{16}^{7} - \zeta_{16}^{5}) q^{11} + \cdots + (\zeta_{16}^{7} - \zeta_{16}^{5}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 8 q^{16} - 8 q^{18} - 8 q^{50} - 8 q^{64} + 8 q^{72} - 8 q^{81} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{16}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
−0.382683 + 0.923880i
−0.923880 0.382683i
0.923880 + 0.382683i
0.382683 0.923880i
−0.382683 0.923880i
−0.923880 + 0.382683i
0.923880 0.382683i
0.382683 + 0.923880i
1.00000i −1.30656 1.30656i −1.00000 0 1.30656 1.30656i 0 1.00000i 2.41421i 0
251.2 1.00000i −0.541196 0.541196i −1.00000 0 0.541196 0.541196i 0 1.00000i 0.414214i 0
251.3 1.00000i 0.541196 + 0.541196i −1.00000 0 −0.541196 + 0.541196i 0 1.00000i 0.414214i 0
251.4 1.00000i 1.30656 + 1.30656i −1.00000 0 −1.30656 + 1.30656i 0 1.00000i 2.41421i 0
1483.1 1.00000i −1.30656 + 1.30656i −1.00000 0 1.30656 + 1.30656i 0 1.00000i 2.41421i 0
1483.2 1.00000i −0.541196 + 0.541196i −1.00000 0 0.541196 + 0.541196i 0 1.00000i 0.414214i 0
1483.3 1.00000i 0.541196 0.541196i −1.00000 0 −0.541196 0.541196i 0 1.00000i 0.414214i 0
1483.4 1.00000i 1.30656 1.30656i −1.00000 0 −1.30656 1.30656i 0 1.00000i 2.41421i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 251.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
17.b even 2 1 inner
17.c even 4 2 inner
136.e odd 2 1 inner
136.j odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2312.1.j.c 8
8.d odd 2 1 CM 2312.1.j.c 8
17.b even 2 1 inner 2312.1.j.c 8
17.c even 4 2 inner 2312.1.j.c 8
17.d even 8 2 2312.1.e.b 4
17.d even 8 2 2312.1.f.c 4
17.e odd 16 2 136.1.p.a 4
17.e odd 16 2 2312.1.p.a 4
17.e odd 16 2 2312.1.p.b 4
17.e odd 16 2 2312.1.p.d 4
51.i even 16 2 1224.1.bv.a 4
68.i even 16 2 544.1.bl.a 4
85.o even 16 2 3400.1.br.b 4
85.p odd 16 2 3400.1.ce.a 4
85.r even 16 2 3400.1.br.a 4
136.e odd 2 1 inner 2312.1.j.c 8
136.j odd 4 2 inner 2312.1.j.c 8
136.p odd 8 2 2312.1.e.b 4
136.p odd 8 2 2312.1.f.c 4
136.q odd 16 2 544.1.bl.a 4
136.s even 16 2 136.1.p.a 4
136.s even 16 2 2312.1.p.a 4
136.s even 16 2 2312.1.p.b 4
136.s even 16 2 2312.1.p.d 4
408.bg odd 16 2 1224.1.bv.a 4
680.ch odd 16 2 3400.1.br.a 4
680.co even 16 2 3400.1.ce.a 4
680.cr odd 16 2 3400.1.br.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.1.p.a 4 17.e odd 16 2
136.1.p.a 4 136.s even 16 2
544.1.bl.a 4 68.i even 16 2
544.1.bl.a 4 136.q odd 16 2
1224.1.bv.a 4 51.i even 16 2
1224.1.bv.a 4 408.bg odd 16 2
2312.1.e.b 4 17.d even 8 2
2312.1.e.b 4 136.p odd 8 2
2312.1.f.c 4 17.d even 8 2
2312.1.f.c 4 136.p odd 8 2
2312.1.j.c 8 1.a even 1 1 trivial
2312.1.j.c 8 8.d odd 2 1 CM
2312.1.j.c 8 17.b even 2 1 inner
2312.1.j.c 8 17.c even 4 2 inner
2312.1.j.c 8 136.e odd 2 1 inner
2312.1.j.c 8 136.j odd 4 2 inner
2312.1.p.a 4 17.e odd 16 2
2312.1.p.a 4 136.s even 16 2
2312.1.p.b 4 17.e odd 16 2
2312.1.p.b 4 136.s even 16 2
2312.1.p.d 4 17.e odd 16 2
2312.1.p.d 4 136.s even 16 2
3400.1.br.a 4 85.r even 16 2
3400.1.br.a 4 680.ch odd 16 2
3400.1.br.b 4 85.o even 16 2
3400.1.br.b 4 680.cr odd 16 2
3400.1.ce.a 4 85.p odd 16 2
3400.1.ce.a 4 680.co even 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 12T_{3}^{4} + 4 \) acting on \(S_{1}^{\mathrm{new}}(2312, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$43$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
show more
show less