Properties

Label 8-228e4-1.1-c1e4-0-1
Degree $8$
Conductor $2702336256$
Sign $1$
Analytic cond. $10.9862$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 4·9-s + 4·19-s + 10·25-s − 28·43-s − 18·49-s + 44·61-s − 16·63-s + 20·73-s + 7·81-s + 34·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 16·169-s + 16·171-s + 173-s − 40·175-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.51·7-s + 4/3·9-s + 0.917·19-s + 2·25-s − 4.26·43-s − 2.57·49-s + 5.63·61-s − 2.01·63-s + 2.34·73-s + 7/9·81-s + 3.09·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.23·169-s + 1.22·171-s + 0.0760·173-s − 3.02·175-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(10.9862\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.476346779\)
\(L(\frac12)\) \(\approx\) \(1.476346779\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) 4.5.a_ak_a_cx
7$C_2$ \( ( 1 + T + p T^{2} )^{4} \) 4.7.e_bi_dk_op
11$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_abi_a_ul
13$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \) 4.13.a_aq_a_pm
17$C_2^2$ \( ( 1 - 29 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_acg_a_ccp
23$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_aca_a_cos
29$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.29.a_em_a_hmc
31$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \) 4.31.a_adk_a_fsk
37$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )^{2} \) 4.37.a_aei_a_iry
41$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \) 4.41.a_aq_a_fbu
43$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \) 4.43.bc_ry_hjs_cfjn
47$C_2^2$ \( ( 1 + 31 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_ck_a_hyx
53$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \) 4.53.a_bg_a_iry
59$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_ce_a_lly
61$C_2$ \( ( 1 - 11 T + p T^{2} )^{4} \) 4.61.abs_bli_atum_hdsl
67$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \) 4.67.a_aeu_a_sze
71$C_2^2$ \( ( 1 + 52 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_ea_a_sxu
73$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \) 4.73.au_ra_ahfs_dcqd
79$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.79.a_ame_a_cdkg
83$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_agq_a_bfik
89$C_2^2$ \( ( 1 + 88 T^{2} + p^{2} T^{4} )^{2} \) 4.89.a_gu_a_bixe
97$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \) 4.97.a_acm_a_bdje
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.121930756973134315599662745561, −8.399486649778862251083002298731, −8.365171961237366598745488726419, −8.256413645644488743149093430888, −8.142080719348784308451884764924, −7.44375764756080496141996854807, −7.21172048854201565485589875521, −6.81673504506562909945401098139, −6.76745985099961675178430091382, −6.76158274412300164631286154622, −6.44685710099270129890573102673, −5.98239956767770817256545959499, −5.54644283656061529798686732084, −5.29443101613988514854568252647, −4.88138550035653836377424351611, −4.83087179585973810854288103502, −4.49012063105368663410121355418, −3.86332620243942542829594880227, −3.43449371691135284643896968006, −3.37197998806289309756128120454, −3.23107548140080737132588156357, −2.48930809001915653167932714819, −2.02631758669149392690401734105, −1.47855915060462285602673724242, −0.73631425203184194066012235856, 0.73631425203184194066012235856, 1.47855915060462285602673724242, 2.02631758669149392690401734105, 2.48930809001915653167932714819, 3.23107548140080737132588156357, 3.37197998806289309756128120454, 3.43449371691135284643896968006, 3.86332620243942542829594880227, 4.49012063105368663410121355418, 4.83087179585973810854288103502, 4.88138550035653836377424351611, 5.29443101613988514854568252647, 5.54644283656061529798686732084, 5.98239956767770817256545959499, 6.44685710099270129890573102673, 6.76158274412300164631286154622, 6.76745985099961675178430091382, 6.81673504506562909945401098139, 7.21172048854201565485589875521, 7.44375764756080496141996854807, 8.142080719348784308451884764924, 8.256413645644488743149093430888, 8.365171961237366598745488726419, 8.399486649778862251083002298731, 9.121930756973134315599662745561

Graph of the $Z$-function along the critical line