L(s) = 1 | + (1.17 − 0.788i)2-s + (−0.726 + 1.57i)3-s + (0.755 − 1.85i)4-s + 2.76i·5-s + (0.388 + 2.41i)6-s + 4.18i·7-s + (−0.573 − 2.76i)8-s + (−1.94 − 2.28i)9-s + (2.18 + 3.24i)10-s − 1.17·11-s + (2.36 + 2.53i)12-s + 5.33·13-s + (3.29 + 4.91i)14-s + (−4.34 − 2.00i)15-s + (−2.85 − 2.79i)16-s − 6.95i·17-s + ⋯ |
L(s) = 1 | + (0.829 − 0.557i)2-s + (−0.419 + 0.907i)3-s + (0.377 − 0.925i)4-s + 1.23i·5-s + (0.158 + 0.987i)6-s + 1.58i·7-s + (−0.202 − 0.979i)8-s + (−0.648 − 0.761i)9-s + (0.689 + 1.02i)10-s − 0.354·11-s + (0.682 + 0.731i)12-s + 1.48·13-s + (0.881 + 1.31i)14-s + (−1.12 − 0.518i)15-s + (−0.714 − 0.699i)16-s − 1.68i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.731 - 0.682i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.731 - 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.54029 + 0.607016i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.54029 + 0.607016i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.17 + 0.788i)T \) |
| 3 | \( 1 + (0.726 - 1.57i)T \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 - 2.76iT - 5T^{2} \) |
| 7 | \( 1 - 4.18iT - 7T^{2} \) |
| 11 | \( 1 + 1.17T + 11T^{2} \) |
| 13 | \( 1 - 5.33T + 13T^{2} \) |
| 17 | \( 1 + 6.95iT - 17T^{2} \) |
| 23 | \( 1 - 2.96T + 23T^{2} \) |
| 29 | \( 1 - 3.64iT - 29T^{2} \) |
| 31 | \( 1 + 4.24iT - 31T^{2} \) |
| 37 | \( 1 + 2.32T + 37T^{2} \) |
| 41 | \( 1 - 3.23iT - 41T^{2} \) |
| 43 | \( 1 + 8.22iT - 43T^{2} \) |
| 47 | \( 1 + 7.26T + 47T^{2} \) |
| 53 | \( 1 - 0.986iT - 53T^{2} \) |
| 59 | \( 1 - 2.71T + 59T^{2} \) |
| 61 | \( 1 - 11.4T + 61T^{2} \) |
| 67 | \( 1 + 0.752iT - 67T^{2} \) |
| 71 | \( 1 + 4.98T + 71T^{2} \) |
| 73 | \( 1 + 5.51T + 73T^{2} \) |
| 79 | \( 1 + 3.62iT - 79T^{2} \) |
| 83 | \( 1 - 8.74T + 83T^{2} \) |
| 89 | \( 1 - 7.44iT - 89T^{2} \) |
| 97 | \( 1 + 3.52T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.98168801983821691229154539239, −11.37836255930062134070880949691, −10.74614527447307182374660585838, −9.712349956117010921795399142170, −8.791809025816036007644308721069, −6.79939724346216229172014772784, −5.86509278127616160486508981183, −5.07393233435714468847750043200, −3.46748012304524265791469936884, −2.64860149418838614932449382871,
1.32344121131777131592574311694, 3.73033346858680609010500700501, 4.81628927586587706605649512884, 5.97994272551200654119422691360, 6.88954303241018028408238909363, 8.027196863209135898245233564666, 8.570421180197612644751778633045, 10.57846203793550291967650967443, 11.34295434653458367658029653265, 12.57154638312315624883663299748