Properties

Label 2-228-12.11-c1-0-31
Degree $2$
Conductor $228$
Sign $0.731 + 0.682i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.17 + 0.788i)2-s + (−0.726 − 1.57i)3-s + (0.755 + 1.85i)4-s − 2.76i·5-s + (0.388 − 2.41i)6-s − 4.18i·7-s + (−0.573 + 2.76i)8-s + (−1.94 + 2.28i)9-s + (2.18 − 3.24i)10-s − 1.17·11-s + (2.36 − 2.53i)12-s + 5.33·13-s + (3.29 − 4.91i)14-s + (−4.34 + 2.00i)15-s + (−2.85 + 2.79i)16-s + 6.95i·17-s + ⋯
L(s)  = 1  + (0.829 + 0.557i)2-s + (−0.419 − 0.907i)3-s + (0.377 + 0.925i)4-s − 1.23i·5-s + (0.158 − 0.987i)6-s − 1.58i·7-s + (−0.202 + 0.979i)8-s + (−0.648 + 0.761i)9-s + (0.689 − 1.02i)10-s − 0.354·11-s + (0.682 − 0.731i)12-s + 1.48·13-s + (0.881 − 1.31i)14-s + (−1.12 + 0.518i)15-s + (−0.714 + 0.699i)16-s + 1.68i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.731 + 0.682i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.731 + 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(228\)    =    \(2^{2} \cdot 3 \cdot 19\)
Sign: $0.731 + 0.682i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{228} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 228,\ (\ :1/2),\ 0.731 + 0.682i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.54029 - 0.607016i\)
\(L(\frac12)\) \(\approx\) \(1.54029 - 0.607016i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.17 - 0.788i)T \)
3 \( 1 + (0.726 + 1.57i)T \)
19 \( 1 + iT \)
good5 \( 1 + 2.76iT - 5T^{2} \)
7 \( 1 + 4.18iT - 7T^{2} \)
11 \( 1 + 1.17T + 11T^{2} \)
13 \( 1 - 5.33T + 13T^{2} \)
17 \( 1 - 6.95iT - 17T^{2} \)
23 \( 1 - 2.96T + 23T^{2} \)
29 \( 1 + 3.64iT - 29T^{2} \)
31 \( 1 - 4.24iT - 31T^{2} \)
37 \( 1 + 2.32T + 37T^{2} \)
41 \( 1 + 3.23iT - 41T^{2} \)
43 \( 1 - 8.22iT - 43T^{2} \)
47 \( 1 + 7.26T + 47T^{2} \)
53 \( 1 + 0.986iT - 53T^{2} \)
59 \( 1 - 2.71T + 59T^{2} \)
61 \( 1 - 11.4T + 61T^{2} \)
67 \( 1 - 0.752iT - 67T^{2} \)
71 \( 1 + 4.98T + 71T^{2} \)
73 \( 1 + 5.51T + 73T^{2} \)
79 \( 1 - 3.62iT - 79T^{2} \)
83 \( 1 - 8.74T + 83T^{2} \)
89 \( 1 + 7.44iT - 89T^{2} \)
97 \( 1 + 3.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57154638312315624883663299748, −11.34295434653458367658029653265, −10.57846203793550291967650967443, −8.570421180197612644751778633045, −8.027196863209135898245233564666, −6.88954303241018028408238909363, −5.97994272551200654119422691360, −4.81628927586587706605649512884, −3.73033346858680609010500700501, −1.32344121131777131592574311694, 2.64860149418838614932449382871, 3.46748012304524265791469936884, 5.07393233435714468847750043200, 5.86509278127616160486508981183, 6.79939724346216229172014772784, 8.791809025816036007644308721069, 9.712349956117010921795399142170, 10.74614527447307182374660585838, 11.37836255930062134070880949691, 11.98168801983821691229154539239

Graph of the $Z$-function along the critical line