L(s) = 1 | + (0.557 + 1.29i)2-s + (−1.17 + 1.27i)3-s + (−1.37 + 1.44i)4-s + 3.63i·5-s + (−2.30 − 0.818i)6-s − 2.62i·7-s + (−2.65 − 0.986i)8-s + (−0.237 − 2.99i)9-s + (−4.72 + 2.02i)10-s + 0.651·11-s + (−0.221 − 3.45i)12-s + 2.40·13-s + (3.41 − 1.46i)14-s + (−4.62 − 4.26i)15-s + (−0.194 − 3.99i)16-s + 6.69i·17-s + ⋯ |
L(s) = 1 | + (0.393 + 0.919i)2-s + (−0.678 + 0.734i)3-s + (−0.689 + 0.724i)4-s + 1.62i·5-s + (−0.942 − 0.334i)6-s − 0.993i·7-s + (−0.937 − 0.348i)8-s + (−0.0793 − 0.996i)9-s + (−1.49 + 0.639i)10-s + 0.196·11-s + (−0.0639 − 0.997i)12-s + 0.667·13-s + (0.912 − 0.391i)14-s + (−1.19 − 1.10i)15-s + (−0.0485 − 0.998i)16-s + 1.62i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0639i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0639i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0321256 - 1.00381i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0321256 - 1.00381i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.557 - 1.29i)T \) |
| 3 | \( 1 + (1.17 - 1.27i)T \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 - 3.63iT - 5T^{2} \) |
| 7 | \( 1 + 2.62iT - 7T^{2} \) |
| 11 | \( 1 - 0.651T + 11T^{2} \) |
| 13 | \( 1 - 2.40T + 13T^{2} \) |
| 17 | \( 1 - 6.69iT - 17T^{2} \) |
| 23 | \( 1 + 4.11T + 23T^{2} \) |
| 29 | \( 1 - 0.639iT - 29T^{2} \) |
| 31 | \( 1 - 9.21iT - 31T^{2} \) |
| 37 | \( 1 - 4.79T + 37T^{2} \) |
| 41 | \( 1 + 10.7iT - 41T^{2} \) |
| 43 | \( 1 - 1.99iT - 43T^{2} \) |
| 47 | \( 1 - 5.91T + 47T^{2} \) |
| 53 | \( 1 + 3.35iT - 53T^{2} \) |
| 59 | \( 1 - 3.51T + 59T^{2} \) |
| 61 | \( 1 - 3.79T + 61T^{2} \) |
| 67 | \( 1 - 11.0iT - 67T^{2} \) |
| 71 | \( 1 - 6.24T + 71T^{2} \) |
| 73 | \( 1 + 3.88T + 73T^{2} \) |
| 79 | \( 1 + 13.6iT - 79T^{2} \) |
| 83 | \( 1 + 10.0T + 83T^{2} \) |
| 89 | \( 1 + 2.37iT - 89T^{2} \) |
| 97 | \( 1 - 15.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.81705701431549762368736612837, −11.63446004592490409289165809309, −10.56855296001602548721893566463, −10.19337963430339957914118729049, −8.653232143352983870682996152899, −7.34322061941022082636897930294, −6.51802465086941618762795532790, −5.79428313794456113537149885765, −4.10150467363811928381802800047, −3.50524568770442811303838657005,
0.841297586953210323083324416492, 2.31398670089707123201738648847, 4.42453241762325387679007744129, 5.34803697151344476035376033788, 6.10111452298155600580348788575, 7.990181013226308437599916041124, 8.968685277594285596584674578998, 9.730002984350597827828218941418, 11.38704352141527861231327290812, 11.76868839911314581893355247376