Properties

Label 2-228-12.11-c1-0-35
Degree $2$
Conductor $228$
Sign $-0.997 - 0.0639i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.557 − 1.29i)2-s + (−1.17 − 1.27i)3-s + (−1.37 − 1.44i)4-s − 3.63i·5-s + (−2.30 + 0.818i)6-s + 2.62i·7-s + (−2.65 + 0.986i)8-s + (−0.237 + 2.99i)9-s + (−4.72 − 2.02i)10-s + 0.651·11-s + (−0.221 + 3.45i)12-s + 2.40·13-s + (3.41 + 1.46i)14-s + (−4.62 + 4.26i)15-s + (−0.194 + 3.99i)16-s − 6.69i·17-s + ⋯
L(s)  = 1  + (0.393 − 0.919i)2-s + (−0.678 − 0.734i)3-s + (−0.689 − 0.724i)4-s − 1.62i·5-s + (−0.942 + 0.334i)6-s + 0.993i·7-s + (−0.937 + 0.348i)8-s + (−0.0793 + 0.996i)9-s + (−1.49 − 0.639i)10-s + 0.196·11-s + (−0.0639 + 0.997i)12-s + 0.667·13-s + (0.912 + 0.391i)14-s + (−1.19 + 1.10i)15-s + (−0.0485 + 0.998i)16-s − 1.62i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0639i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0639i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(228\)    =    \(2^{2} \cdot 3 \cdot 19\)
Sign: $-0.997 - 0.0639i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{228} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 228,\ (\ :1/2),\ -0.997 - 0.0639i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0321256 + 1.00381i\)
\(L(\frac12)\) \(\approx\) \(0.0321256 + 1.00381i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.557 + 1.29i)T \)
3 \( 1 + (1.17 + 1.27i)T \)
19 \( 1 + iT \)
good5 \( 1 + 3.63iT - 5T^{2} \)
7 \( 1 - 2.62iT - 7T^{2} \)
11 \( 1 - 0.651T + 11T^{2} \)
13 \( 1 - 2.40T + 13T^{2} \)
17 \( 1 + 6.69iT - 17T^{2} \)
23 \( 1 + 4.11T + 23T^{2} \)
29 \( 1 + 0.639iT - 29T^{2} \)
31 \( 1 + 9.21iT - 31T^{2} \)
37 \( 1 - 4.79T + 37T^{2} \)
41 \( 1 - 10.7iT - 41T^{2} \)
43 \( 1 + 1.99iT - 43T^{2} \)
47 \( 1 - 5.91T + 47T^{2} \)
53 \( 1 - 3.35iT - 53T^{2} \)
59 \( 1 - 3.51T + 59T^{2} \)
61 \( 1 - 3.79T + 61T^{2} \)
67 \( 1 + 11.0iT - 67T^{2} \)
71 \( 1 - 6.24T + 71T^{2} \)
73 \( 1 + 3.88T + 73T^{2} \)
79 \( 1 - 13.6iT - 79T^{2} \)
83 \( 1 + 10.0T + 83T^{2} \)
89 \( 1 - 2.37iT - 89T^{2} \)
97 \( 1 - 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.76868839911314581893355247376, −11.38704352141527861231327290812, −9.730002984350597827828218941418, −8.968685277594285596584674578998, −7.990181013226308437599916041124, −6.10111452298155600580348788575, −5.34803697151344476035376033788, −4.42453241762325387679007744129, −2.31398670089707123201738648847, −0.841297586953210323083324416492, 3.50524568770442811303838657005, 4.10150467363811928381802800047, 5.79428313794456113537149885765, 6.51802465086941618762795532790, 7.34322061941022082636897930294, 8.653232143352983870682996152899, 10.19337963430339957914118729049, 10.56855296001602548721893566463, 11.63446004592490409289165809309, 12.81705701431549762368736612837

Graph of the $Z$-function along the critical line