L(s) = 1 | + (1.00 + 1.73i)5-s + (1.26 + 2.32i)7-s + (4.15 + 2.40i)11-s + (0.864 + 0.499i)13-s + (−0.0445 − 0.0772i)17-s + (3.68 + 2.12i)19-s + (−0.839 + 0.484i)23-s + (0.492 − 0.853i)25-s + (2.93 − 1.69i)29-s − 5.03i·31-s + (−2.76 + 4.52i)35-s + (−0.0675 + 0.117i)37-s + (−5.62 + 9.73i)41-s + (−3.66 − 6.35i)43-s + 3.53·47-s + ⋯ |
L(s) = 1 | + (0.447 + 0.775i)5-s + (0.478 + 0.878i)7-s + (1.25 + 0.723i)11-s + (0.239 + 0.138i)13-s + (−0.0108 − 0.0187i)17-s + (0.846 + 0.488i)19-s + (−0.175 + 0.101i)23-s + (0.0985 − 0.170i)25-s + (0.544 − 0.314i)29-s − 0.903i·31-s + (−0.467 + 0.764i)35-s + (−0.0111 + 0.0192i)37-s + (−0.877 + 1.52i)41-s + (−0.559 − 0.968i)43-s + 0.515·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.236 - 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.236 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.300101258\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.300101258\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.26 - 2.32i)T \) |
good | 5 | \( 1 + (-1.00 - 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.15 - 2.40i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.864 - 0.499i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.0445 + 0.0772i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.68 - 2.12i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.839 - 0.484i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.93 + 1.69i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 5.03iT - 31T^{2} \) |
| 37 | \( 1 + (0.0675 - 0.117i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.62 - 9.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.66 + 6.35i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.53T + 47T^{2} \) |
| 53 | \( 1 + (5.31 - 3.07i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 9.76T + 59T^{2} \) |
| 61 | \( 1 + 13.0iT - 61T^{2} \) |
| 67 | \( 1 + 15.1T + 67T^{2} \) |
| 71 | \( 1 - 4.56iT - 71T^{2} \) |
| 73 | \( 1 + (-3.73 + 2.15i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 11.8T + 79T^{2} \) |
| 83 | \( 1 + (1.62 + 2.81i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.06 + 1.84i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.03 + 0.597i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.331492583251676430653546449076, −8.427760560817199021784669998712, −7.65989752006422113255463259223, −6.66249538935463821617717823604, −6.22937269309012836875299518024, −5.29295156663023620017909696647, −4.36728247459384600374669589808, −3.35108788534024070693803531642, −2.32825770317584215786370404465, −1.46329895547990674699812204493,
0.900169750999864159440466176742, 1.56702812596211856776189886576, 3.16570690454290476745240568119, 4.00871989977198978661983814979, 4.89806362066259752394973059593, 5.59853929553817032729739649266, 6.60997773851751254527777681455, 7.22517112819633831582826701713, 8.284154517741891900983700462627, 8.832961470900905266864535643015