Properties

Label 2-2268-63.4-c1-0-16
Degree $2$
Conductor $2268$
Sign $0.997 - 0.0746i$
Analytic cond. $18.1100$
Root an. cond. $4.25559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.28·5-s + (−2.64 − 0.0963i)7-s + 3.81·11-s + (−1.64 + 2.84i)13-s + (−0.405 + 0.702i)17-s + (−3.54 − 6.14i)19-s + 6.47·23-s + 13.3·25-s + (1.90 + 3.30i)29-s + (−1.64 − 2.84i)31-s + (−11.3 − 0.413i)35-s + (2.88 + 4.99i)37-s + (1.04 − 1.81i)41-s + (4.38 + 7.59i)43-s + (1.66 − 2.88i)47-s + ⋯
L(s)  = 1  + 1.91·5-s + (−0.999 − 0.0364i)7-s + 1.14·11-s + (−0.455 + 0.789i)13-s + (−0.0983 + 0.170i)17-s + (−0.814 − 1.41i)19-s + 1.35·23-s + 2.67·25-s + (0.353 + 0.612i)29-s + (−0.295 − 0.511i)31-s + (−1.91 − 0.0698i)35-s + (0.473 + 0.820i)37-s + (0.163 − 0.283i)41-s + (0.668 + 1.15i)43-s + (0.243 − 0.421i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0746i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0746i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2268\)    =    \(2^{2} \cdot 3^{4} \cdot 7\)
Sign: $0.997 - 0.0746i$
Analytic conductor: \(18.1100\)
Root analytic conductor: \(4.25559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2268} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2268,\ (\ :1/2),\ 0.997 - 0.0746i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.484783066\)
\(L(\frac12)\) \(\approx\) \(2.484783066\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.64 + 0.0963i)T \)
good5 \( 1 - 4.28T + 5T^{2} \)
11 \( 1 - 3.81T + 11T^{2} \)
13 \( 1 + (1.64 - 2.84i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (0.405 - 0.702i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.54 + 6.14i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 - 6.47T + 23T^{2} \)
29 \( 1 + (-1.90 - 3.30i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (1.64 + 2.84i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-2.88 - 4.99i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.04 + 1.81i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-4.38 - 7.59i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-1.66 + 2.88i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-4.93 + 8.54i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.73 - 3.01i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (2.97 - 5.15i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.76 - 3.05i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 6.05T + 71T^{2} \)
73 \( 1 + (-5.19 + 8.99i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-2.57 + 4.45i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (0.856 + 1.48i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-6.26 - 10.8i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.522 + 0.905i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.335332354924570037758140541465, −8.698580892706085518104261241470, −6.97054051070055031221173147768, −6.71002678414868073161343159126, −6.08695486391030924075665665539, −5.14316536902175125509893076563, −4.28562605482244374936905049612, −2.96385298606395440552360633520, −2.24364134413256668075074533013, −1.10834280904450524236722028953, 1.06494186289986028728163044591, 2.19713329212690146024655493417, 3.01489500017206919175607318442, 4.12009058311257065226577899423, 5.35011984612580744441839839723, 5.92223157891648010600000263711, 6.51530228952924627026358155629, 7.20897764430962079918911062527, 8.506982503600664237916917840677, 9.304061427624487872381477324038

Graph of the $Z$-function along the critical line