L(s) = 1 | + 4.28·5-s + (−2.64 + 0.0963i)7-s + 3.81·11-s + (−1.64 − 2.84i)13-s + (−0.405 − 0.702i)17-s + (−3.54 + 6.14i)19-s + 6.47·23-s + 13.3·25-s + (1.90 − 3.30i)29-s + (−1.64 + 2.84i)31-s + (−11.3 + 0.413i)35-s + (2.88 − 4.99i)37-s + (1.04 + 1.81i)41-s + (4.38 − 7.59i)43-s + (1.66 + 2.88i)47-s + ⋯ |
L(s) = 1 | + 1.91·5-s + (−0.999 + 0.0364i)7-s + 1.14·11-s + (−0.455 − 0.789i)13-s + (−0.0983 − 0.170i)17-s + (−0.814 + 1.41i)19-s + 1.35·23-s + 2.67·25-s + (0.353 − 0.612i)29-s + (−0.295 + 0.511i)31-s + (−1.91 + 0.0698i)35-s + (0.473 − 0.820i)37-s + (0.163 + 0.283i)41-s + (0.668 − 1.15i)43-s + (0.243 + 0.421i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0746i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.484783066\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.484783066\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.64 - 0.0963i)T \) |
good | 5 | \( 1 - 4.28T + 5T^{2} \) |
| 11 | \( 1 - 3.81T + 11T^{2} \) |
| 13 | \( 1 + (1.64 + 2.84i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.405 + 0.702i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.54 - 6.14i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 6.47T + 23T^{2} \) |
| 29 | \( 1 + (-1.90 + 3.30i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.64 - 2.84i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.88 + 4.99i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.04 - 1.81i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.38 + 7.59i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.66 - 2.88i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.93 - 8.54i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.73 + 3.01i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.97 + 5.15i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.76 + 3.05i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.05T + 71T^{2} \) |
| 73 | \( 1 + (-5.19 - 8.99i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.57 - 4.45i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.856 - 1.48i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.26 + 10.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.522 - 0.905i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.304061427624487872381477324038, −8.506982503600664237916917840677, −7.20897764430962079918911062527, −6.51530228952924627026358155629, −5.92223157891648010600000263711, −5.35011984612580744441839839723, −4.12009058311257065226577899423, −3.01489500017206919175607318442, −2.19713329212690146024655493417, −1.06494186289986028728163044591,
1.10834280904450524236722028953, 2.24364134413256668075074533013, 2.96385298606395440552360633520, 4.28562605482244374936905049612, 5.14316536902175125509893076563, 6.08695486391030924075665665539, 6.71002678414868073161343159126, 6.97054051070055031221173147768, 8.698580892706085518104261241470, 9.335332354924570037758140541465