| L(s) = 1 | + 1.46i·2-s + i·3-s − 0.139·4-s − 1.46·6-s − 1.32i·7-s + 2.72i·8-s − 9-s − 5.32·11-s − 0.139i·12-s − 2.39i·13-s + 1.93·14-s − 4.25·16-s − 5.04i·17-s − 1.46i·18-s − 0.925·19-s + ⋯ |
| L(s) = 1 | + 1.03i·2-s + 0.577i·3-s − 0.0695·4-s − 0.597·6-s − 0.500i·7-s + 0.962i·8-s − 0.333·9-s − 1.60·11-s − 0.0401i·12-s − 0.665i·13-s + 0.517·14-s − 1.06·16-s − 1.22i·17-s − 0.344i·18-s − 0.212·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8300362174\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8300362174\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
| good | 2 | \( 1 - 1.46iT - 2T^{2} \) |
| 7 | \( 1 + 1.32iT - 7T^{2} \) |
| 11 | \( 1 + 5.32T + 11T^{2} \) |
| 13 | \( 1 + 2.39iT - 13T^{2} \) |
| 17 | \( 1 + 5.04iT - 17T^{2} \) |
| 19 | \( 1 + 0.925T + 19T^{2} \) |
| 23 | \( 1 + 5.72iT - 23T^{2} \) |
| 31 | \( 1 - 5.72T + 31T^{2} \) |
| 37 | \( 1 - 1.07iT - 37T^{2} \) |
| 41 | \( 1 + 11.2T + 41T^{2} \) |
| 43 | \( 1 + 9.29iT - 43T^{2} \) |
| 47 | \( 1 - 3.97iT - 47T^{2} \) |
| 53 | \( 1 + 2.12iT - 53T^{2} \) |
| 59 | \( 1 - 1.35T + 59T^{2} \) |
| 61 | \( 1 - 2.92T + 61T^{2} \) |
| 67 | \( 1 + 7.97iT - 67T^{2} \) |
| 71 | \( 1 + 4.12T + 71T^{2} \) |
| 73 | \( 1 - 1.07iT - 73T^{2} \) |
| 79 | \( 1 + 8.36T + 79T^{2} \) |
| 83 | \( 1 - 4.79iT - 83T^{2} \) |
| 89 | \( 1 - 0.547T + 89T^{2} \) |
| 97 | \( 1 + 5.57iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.631131851809854901136430101024, −8.215455319851633369893916979320, −7.39118418651607452502564061080, −6.80452674875797708079547378078, −5.77361658007636918230834627859, −5.13296826981725685446076491890, −4.53120394212220484651355667415, −3.11197416585201466789715223303, −2.38448154626074029752869466271, −0.26879981245029802055775090508,
1.40733691674606719290876071417, 2.24196874558558341165232043845, 2.98741904847059349632911037729, 3.97562649208654918004964523541, 5.12785789919476738080718129908, 5.99920056319391399024084540830, 6.78686518101722973615468500502, 7.67453919122002576909040422829, 8.357715211075908363970591381340, 9.221922859734647951064018647777