Properties

Label 2175.2.c.l
Level $2175$
Weight $2$
Character orbit 2175.c
Analytic conductor $17.367$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,2,Mod(349,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-12,0,-4,0,0,-6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3356224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} + \beta_{3}) q^{2} + \beta_{3} q^{3} + ( - \beta_{4} - 2) q^{4} + (\beta_{2} - 1) q^{6} + (\beta_{5} + \beta_{3} - \beta_1) q^{7} + ( - \beta_{3} + 2 \beta_1) q^{8} - q^{9} + (\beta_{4} + \beta_{2} - 3) q^{11}+ \cdots + ( - \beta_{4} - \beta_{2} + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{4} - 4 q^{6} - 6 q^{9} - 16 q^{11} + 10 q^{14} - 8 q^{16} + 4 q^{19} - 8 q^{21} + 6 q^{24} - 22 q^{26} - 6 q^{29} + 12 q^{31} - 2 q^{34} + 12 q^{36} + 8 q^{39} - 4 q^{41} + 22 q^{44} - 4 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 8x^{4} + 16x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 4\nu^{2} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 7\nu^{3} + 12\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 4\beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 7\beta_{3} + 16\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
349.1
2.11491i
0.254102i
1.86081i
1.86081i
0.254102i
2.11491i
2.47283i 1.00000i −4.11491 0 −2.47283 1.64207i 5.22982i −1.00000 0
349.2 1.93543i 1.00000i −1.74590 0 1.93543 3.68133i 0.491797i −1.00000 0
349.3 1.46260i 1.00000i −0.139194 0 −1.46260 1.32340i 2.72161i −1.00000 0
349.4 1.46260i 1.00000i −0.139194 0 −1.46260 1.32340i 2.72161i −1.00000 0
349.5 1.93543i 1.00000i −1.74590 0 1.93543 3.68133i 0.491797i −1.00000 0
349.6 2.47283i 1.00000i −4.11491 0 −2.47283 1.64207i 5.22982i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 349.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.2.c.l 6
5.b even 2 1 inner 2175.2.c.l 6
5.c odd 4 1 87.2.a.b 3
5.c odd 4 1 2175.2.a.t 3
15.e even 4 1 261.2.a.e 3
15.e even 4 1 6525.2.a.bg 3
20.e even 4 1 1392.2.a.u 3
35.f even 4 1 4263.2.a.m 3
40.i odd 4 1 5568.2.a.cb 3
40.k even 4 1 5568.2.a.bx 3
60.l odd 4 1 4176.2.a.bx 3
145.h odd 4 1 2523.2.a.h 3
435.p even 4 1 7569.2.a.t 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.2.a.b 3 5.c odd 4 1
261.2.a.e 3 15.e even 4 1
1392.2.a.u 3 20.e even 4 1
2175.2.a.t 3 5.c odd 4 1
2175.2.c.l 6 1.a even 1 1 trivial
2175.2.c.l 6 5.b even 2 1 inner
2523.2.a.h 3 145.h odd 4 1
4176.2.a.bx 3 60.l odd 4 1
4263.2.a.m 3 35.f even 4 1
5568.2.a.bx 3 40.k even 4 1
5568.2.a.cb 3 40.i odd 4 1
6525.2.a.bg 3 15.e even 4 1
7569.2.a.t 3 435.p even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2175, [\chi])\):

\( T_{2}^{6} + 12T_{2}^{4} + 44T_{2}^{2} + 49 \) Copy content Toggle raw display
\( T_{7}^{6} + 18T_{7}^{4} + 65T_{7}^{2} + 64 \) Copy content Toggle raw display
\( T_{11}^{3} + 8T_{11}^{2} + 15T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 12 T^{4} + \cdots + 49 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 18 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( (T^{3} + 8 T^{2} + 15 T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 30 T^{4} + \cdots + 676 \) Copy content Toggle raw display
$17$ \( T^{6} + 70 T^{4} + \cdots + 8836 \) Copy content Toggle raw display
$19$ \( (T^{3} - 2 T^{2} - 20 T - 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 44 T^{4} + \cdots + 1024 \) Copy content Toggle raw display
$29$ \( (T + 1)^{6} \) Copy content Toggle raw display
$31$ \( (T^{3} - 6 T^{2} - 4 T + 32)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 64 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$41$ \( (T^{3} + 2 T^{2} - 100 T + 56)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 208 T^{4} + \cdots + 65536 \) Copy content Toggle raw display
$47$ \( T^{6} + 162 T^{4} + \cdots + 46656 \) Copy content Toggle raw display
$53$ \( T^{6} + 272 T^{4} + \cdots + 61504 \) Copy content Toggle raw display
$59$ \( (T^{3} - 20 T^{2} + \cdots - 112)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 4 T^{2} - 16 T + 56)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 114 T^{4} + \cdots + 2704 \) Copy content Toggle raw display
$71$ \( (T^{3} + 14 T^{2} + \cdots - 416)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 64 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$79$ \( (T^{3} - 2 T^{2} + \cdots + 224)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 120 T^{4} + \cdots + 43264 \) Copy content Toggle raw display
$89$ \( (T^{3} - 8 T^{2} - 131 T + 74)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 160 T^{4} + \cdots + 10816 \) Copy content Toggle raw display
show more
show less