L(s) = 1 | + 5i·5-s − 7.56i·7-s − 32.1·11-s − 70.8·13-s − 78.3i·17-s − 58.7i·19-s − 126.·23-s − 25·25-s + 131. i·29-s + 294. i·31-s + 37.8·35-s − 242.·37-s + 32.2i·41-s − 178. i·43-s + 202.·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 0.408i·7-s − 0.880·11-s − 1.51·13-s − 1.11i·17-s − 0.709i·19-s − 1.14·23-s − 0.200·25-s + 0.839i·29-s + 1.70i·31-s + 0.182·35-s − 1.07·37-s + 0.122i·41-s − 0.631i·43-s + 0.628·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.118634004\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.118634004\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 5iT \) |
good | 7 | \( 1 + 7.56iT - 343T^{2} \) |
| 11 | \( 1 + 32.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 70.8T + 2.19e3T^{2} \) |
| 17 | \( 1 + 78.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 58.7iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 126.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 131. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 294. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 242.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 32.2iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 178. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 202.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 754. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 674.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 228.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 150. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 902.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.05e3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 679. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 898.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 546. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.02e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.776296821406692063932112943755, −7.897306270299042634237695462994, −7.04818978920931689133964296952, −6.84965375006629256149167279659, −5.26502388675434448597077758377, −5.07143416744071421993835823647, −3.82067985406166227803252087703, −2.82577056268190733349071932722, −2.12450992579963673627380532811, −0.54811594685245985671863912062,
0.37651573932827174931537494248, 1.92073242485360773981143109555, 2.54364286421483609637259548572, 3.87304288304531667384842601304, 4.61129901649719536727495884376, 5.62772467454750540961962992991, 6.01990158836469343924502384503, 7.33545377794308405019354711260, 7.900313779896570517610332017656, 8.533781152168941728937774488429