L(s) = 1 | − 5i·5-s + 15.0i·7-s − 42.5·11-s − 43.6·13-s − 39.0i·17-s − 43.1i·19-s − 151.·23-s − 25·25-s + 118. i·29-s − 270. i·31-s + 75.1·35-s + 202.·37-s − 95.4i·41-s − 47.6i·43-s − 236.·47-s + ⋯ |
L(s) = 1 | − 0.447i·5-s + 0.811i·7-s − 1.16·11-s − 0.931·13-s − 0.557i·17-s − 0.520i·19-s − 1.37·23-s − 0.200·25-s + 0.760i·29-s − 1.56i·31-s + 0.362·35-s + 0.901·37-s − 0.363i·41-s − 0.169i·43-s − 0.735·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.186453804\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.186453804\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 5iT \) |
good | 7 | \( 1 - 15.0iT - 343T^{2} \) |
| 11 | \( 1 + 42.5T + 1.33e3T^{2} \) |
| 13 | \( 1 + 43.6T + 2.19e3T^{2} \) |
| 17 | \( 1 + 39.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 43.1iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 151.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 118. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 270. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 202.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 95.4iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 47.6iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 236.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 227. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 335.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 324.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 161. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 451.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 315.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 753. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 554.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 739. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.71e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.783529527258172777314403764695, −7.967163878588206338446843107110, −7.44551406000705736719843485735, −6.33954308515855662746467105873, −5.44619841129281712919473045772, −4.98489638511858326762390848934, −3.96986123479490006324209310036, −2.63484168511247901118797395295, −2.18883224904379965559228204653, −0.57801219894713141489677967241,
0.38420385931524125791529067516, 1.82265960356217518728953657051, 2.75444708328503983986302111478, 3.73981653785037655163794332451, 4.58825636982517441697384804181, 5.49266751775187251154555138166, 6.35748410817730322508457633169, 7.20764139618682457860710401332, 7.85992879675472657613992596159, 8.401247176088027542561268424215