L(s) = 1 | + 5i·5-s + 15.0i·7-s + 42.5·11-s − 43.6·13-s + 39.0i·17-s − 43.1i·19-s + 151.·23-s − 25·25-s − 118. i·29-s − 270. i·31-s − 75.1·35-s + 202.·37-s + 95.4i·41-s − 47.6i·43-s + 236.·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s + 0.811i·7-s + 1.16·11-s − 0.931·13-s + 0.557i·17-s − 0.520i·19-s + 1.37·23-s − 0.200·25-s − 0.760i·29-s − 1.56i·31-s − 0.362·35-s + 0.901·37-s + 0.363i·41-s − 0.169i·43-s + 0.735·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.356037300\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.356037300\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 5iT \) |
good | 7 | \( 1 - 15.0iT - 343T^{2} \) |
| 11 | \( 1 - 42.5T + 1.33e3T^{2} \) |
| 13 | \( 1 + 43.6T + 2.19e3T^{2} \) |
| 17 | \( 1 - 39.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 43.1iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 151.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 118. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 270. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 202.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 95.4iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 47.6iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 236.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 227. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 335.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 324.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 161. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 451.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 315.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 753. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 554.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 739. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.71e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.976169519210912406646627145765, −7.978388519699883442649797033112, −7.19188069824985285194892143977, −6.42021113806954393541067829363, −5.74850268701289563157359131084, −4.74515171740814341058404574765, −3.89813246604426083697872362960, −2.80324344900558349119279936374, −2.07820439060660618932795897906, −0.72692362387743227038536098835,
0.72139503586435457736128591431, 1.48479360903128857355474273489, 2.85126959339786004345399664929, 3.81123644768563459403677756278, 4.64376718692318303721968502244, 5.31597024285308790883776875534, 6.48255170082578288064100118945, 7.12823003612717933154439537181, 7.73470738010756740351692475418, 8.929478006699708268516990194021