L(s) = 1 | + 5i·5-s + 6.39i·7-s − 55.5·11-s + 66.4·13-s − 5.75i·17-s + 20.4i·19-s − 23.9·23-s − 25·25-s − 264. i·29-s − 54.2i·31-s − 31.9·35-s + 273.·37-s − 169. i·41-s + 180. i·43-s − 124.·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s + 0.345i·7-s − 1.52·11-s + 1.41·13-s − 0.0821i·17-s + 0.247i·19-s − 0.216·23-s − 0.200·25-s − 1.69i·29-s − 0.314i·31-s − 0.154·35-s + 1.21·37-s − 0.646i·41-s + 0.641i·43-s − 0.385·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.890260022\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.890260022\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 5iT \) |
good | 7 | \( 1 - 6.39iT - 343T^{2} \) |
| 11 | \( 1 + 55.5T + 1.33e3T^{2} \) |
| 13 | \( 1 - 66.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + 5.75iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 20.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 23.9T + 1.21e4T^{2} \) |
| 29 | \( 1 + 264. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 54.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 273.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 169. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 180. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 124.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 174. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 19.6T + 2.05e5T^{2} \) |
| 61 | \( 1 + 676.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 374. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 976.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 246.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.15e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 59.4T + 5.71e5T^{2} \) |
| 89 | \( 1 - 474. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 54.9T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.669519512900225061282003980356, −7.964392301632177876210372413616, −7.43299966936985239172252599396, −6.10447125811789049664705295830, −5.93407712051969950145809085038, −4.77977783981468522143329409372, −3.82641453147429050483143799988, −2.85878917030116314086114523600, −2.07723384286559144756813924619, −0.66382701093258941288910862883,
0.58672767959591953008119630480, 1.61357106805049579489578533181, 2.83556649983224501775013433541, 3.71262903989269404234624107939, 4.71694668492310038513062788324, 5.43193573768728249115709418948, 6.24049869292250013225880596259, 7.18291889445321038064129568238, 8.008788808974408410188414232833, 8.545339376661760111527209961088