Properties

Label 2-2057-1.1-c3-0-325
Degree $2$
Conductor $2057$
Sign $-1$
Analytic cond. $121.366$
Root an. cond. $11.0166$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s − 8·3-s + 4-s + 6·5-s − 24·6-s + 28·7-s − 21·8-s + 37·9-s + 18·10-s − 8·12-s + 58·13-s + 84·14-s − 48·15-s − 71·16-s − 17·17-s + 111·18-s − 116·19-s + 6·20-s − 224·21-s − 60·23-s + 168·24-s − 89·25-s + 174·26-s − 80·27-s + 28·28-s − 30·29-s − 144·30-s + ⋯
L(s)  = 1  + 1.06·2-s − 1.53·3-s + 1/8·4-s + 0.536·5-s − 1.63·6-s + 1.51·7-s − 0.928·8-s + 1.37·9-s + 0.569·10-s − 0.192·12-s + 1.23·13-s + 1.60·14-s − 0.826·15-s − 1.10·16-s − 0.242·17-s + 1.45·18-s − 1.40·19-s + 0.0670·20-s − 2.32·21-s − 0.543·23-s + 1.42·24-s − 0.711·25-s + 1.31·26-s − 0.570·27-s + 0.188·28-s − 0.192·29-s − 0.876·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(121.366\)
Root analytic conductor: \(11.0166\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2057,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
17 \( 1 + p T \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
3 \( 1 + 8 T + p^{3} T^{2} \)
5 \( 1 - 6 T + p^{3} T^{2} \)
7 \( 1 - 4 p T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
19 \( 1 + 116 T + p^{3} T^{2} \)
23 \( 1 + 60 T + p^{3} T^{2} \)
29 \( 1 + 30 T + p^{3} T^{2} \)
31 \( 1 + 172 T + p^{3} T^{2} \)
37 \( 1 + 58 T + p^{3} T^{2} \)
41 \( 1 - 342 T + p^{3} T^{2} \)
43 \( 1 - 148 T + p^{3} T^{2} \)
47 \( 1 - 288 T + p^{3} T^{2} \)
53 \( 1 - 6 p T + p^{3} T^{2} \)
59 \( 1 - 252 T + p^{3} T^{2} \)
61 \( 1 + 110 T + p^{3} T^{2} \)
67 \( 1 + 484 T + p^{3} T^{2} \)
71 \( 1 + 708 T + p^{3} T^{2} \)
73 \( 1 + 362 T + p^{3} T^{2} \)
79 \( 1 - 484 T + p^{3} T^{2} \)
83 \( 1 + 756 T + p^{3} T^{2} \)
89 \( 1 + 774 T + p^{3} T^{2} \)
97 \( 1 + 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.436651985655098341631087818405, −7.32398886975979948715588764577, −6.22490366041311547826621142146, −5.84812157657884637755659701007, −5.29709234944600011466801939855, −4.36666410483750531078792716923, −4.00253625435570803617748140828, −2.26699076022193269076634215280, −1.28243123447466583908947483021, 0, 1.28243123447466583908947483021, 2.26699076022193269076634215280, 4.00253625435570803617748140828, 4.36666410483750531078792716923, 5.29709234944600011466801939855, 5.84812157657884637755659701007, 6.22490366041311547826621142146, 7.32398886975979948715588764577, 8.436651985655098341631087818405

Graph of the $Z$-function along the critical line