Properties

Label 4-2040e2-1.1-c0e2-0-0
Degree $4$
Conductor $4161600$
Sign $1$
Analytic cond. $1.03651$
Root an. cond. $1.00900$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s − 9-s + 5·16-s − 2·17-s + 2·18-s − 25-s − 6·32-s + 4·34-s − 3·36-s + 4·47-s − 2·49-s + 2·50-s + 7·64-s − 6·68-s + 4·72-s + 81-s − 8·94-s + 4·98-s − 3·100-s − 2·121-s + 127-s − 8·128-s + 131-s + 8·136-s + 137-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s − 9-s + 5·16-s − 2·17-s + 2·18-s − 25-s − 6·32-s + 4·34-s − 3·36-s + 4·47-s − 2·49-s + 2·50-s + 7·64-s − 6·68-s + 4·72-s + 81-s − 8·94-s + 4·98-s − 3·100-s − 2·121-s + 127-s − 8·128-s + 131-s + 8·136-s + 137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4161600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4161600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4161600\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1.03651\)
Root analytic conductor: \(1.00900\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4161600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2841021297\)
\(L(\frac12)\) \(\approx\) \(0.2841021297\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + T^{2} \)
17$C_1$ \( ( 1 + T )^{2} \)
good7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$ \( ( 1 - T )^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.862247532349353100599198105352, −9.198237556737216374530623321019, −8.937338730127682590102136482179, −8.319181700244944463799992017180, −8.208062461854400870956281798795, −7.56848596346261069070412965320, −7.47179006703923904991620179878, −6.72466227307913697621380941399, −6.69613205757517073993013245611, −6.02859335694474862754770264475, −5.90002311286312899972774297185, −5.34681013654147847007234239427, −4.76595554897815050849615463926, −3.95601988620512104240189399943, −3.69984987874954663982115755958, −2.73059760688896385685619785822, −2.65880406357845219204083894496, −2.08734021763495813816948097568, −1.52505240288990944838480689011, −0.51293976111304546416455528160, 0.51293976111304546416455528160, 1.52505240288990944838480689011, 2.08734021763495813816948097568, 2.65880406357845219204083894496, 2.73059760688896385685619785822, 3.69984987874954663982115755958, 3.95601988620512104240189399943, 4.76595554897815050849615463926, 5.34681013654147847007234239427, 5.90002311286312899972774297185, 6.02859335694474862754770264475, 6.69613205757517073993013245611, 6.72466227307913697621380941399, 7.47179006703923904991620179878, 7.56848596346261069070412965320, 8.208062461854400870956281798795, 8.319181700244944463799992017180, 8.937338730127682590102136482179, 9.198237556737216374530623321019, 9.862247532349353100599198105352

Graph of the $Z$-function along the critical line