Properties

Label 2.2040.8t11.a.a
Dimension $2$
Group $Q_8:C_2$
Conductor $2040$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(2040\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Artin stem field: Galois closure of 8.0.59927040000.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.2040.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-30}, \sqrt{34})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} - 3x^{6} + 10x^{5} - 14x^{3} + 125x^{2} + 6x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 19 + 143\cdot 151 + 115\cdot 151^{2} + 93\cdot 151^{3} + 74\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 24 + 93\cdot 151 + 105\cdot 151^{2} + 126\cdot 151^{3} + 85\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 71 + 66\cdot 151 + 54\cdot 151^{2} + 145\cdot 151^{3} + 30\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 72 + 83\cdot 151 + 59\cdot 151^{2} + 107\cdot 151^{3} + 133\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 103 + 54\cdot 151 + 113\cdot 151^{2} + 120\cdot 151^{3} + 150\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 104 + 70\cdot 151 + 23\cdot 151^{2} + 98\cdot 151^{3} + 82\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 105 + 87\cdot 151 + 28\cdot 151^{2} + 60\cdot 151^{3} + 34\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 108 + 4\cdot 151 + 103\cdot 151^{2} + 2\cdot 151^{3} + 11\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(4,6)$
$(1,7,8,3)(2,4,5,6)$
$(1,6,8,4)(2,3,5,7)$
$(1,8)(2,5)(3,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,7)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(2,5)(4,6)$$0$
$2$$2$$(1,6)(2,7)(3,5)(4,8)$$0$
$1$$4$$(1,7,8,3)(2,4,5,6)$$-2 \zeta_{4}$
$1$$4$$(1,3,8,7)(2,6,5,4)$$2 \zeta_{4}$
$2$$4$$(1,6,8,4)(2,3,5,7)$$0$
$2$$4$$(1,7,8,3)(2,6,5,4)$$0$
$2$$4$$(1,2,8,5)(3,6,7,4)$$0$