Properties

Label 2-2028-13.12-c1-0-20
Degree $2$
Conductor $2028$
Sign $-0.277 + 0.960i$
Analytic cond. $16.1936$
Root an. cond. $4.02413$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2.41i·5-s − 4.14i·7-s + 9-s − 3.46i·11-s + 2.41i·15-s − 6.17·17-s − 3.46i·19-s − 4.14i·21-s − 2·23-s − 0.821·25-s + 27-s − 8.17·29-s − 7.60i·31-s − 3.46i·33-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.07i·5-s − 1.56i·7-s + 0.333·9-s − 1.04i·11-s + 0.622i·15-s − 1.49·17-s − 0.794i·19-s − 0.904i·21-s − 0.417·23-s − 0.164·25-s + 0.192·27-s − 1.51·29-s − 1.36i·31-s − 0.603i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.277 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2028\)    =    \(2^{2} \cdot 3 \cdot 13^{2}\)
Sign: $-0.277 + 0.960i$
Analytic conductor: \(16.1936\)
Root analytic conductor: \(4.02413\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2028} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2028,\ (\ :1/2),\ -0.277 + 0.960i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.392309746\)
\(L(\frac12)\) \(\approx\) \(1.392309746\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 2.41iT - 5T^{2} \)
7 \( 1 + 4.14iT - 7T^{2} \)
11 \( 1 + 3.46iT - 11T^{2} \)
17 \( 1 + 6.17T + 17T^{2} \)
19 \( 1 + 3.46iT - 19T^{2} \)
23 \( 1 + 2T + 23T^{2} \)
29 \( 1 + 8.17T + 29T^{2} \)
31 \( 1 + 7.60iT - 31T^{2} \)
37 \( 1 + 1.05iT - 37T^{2} \)
41 \( 1 + 5.87iT - 41T^{2} \)
43 \( 1 + 0.821T + 43T^{2} \)
47 \( 1 - 10.3iT - 47T^{2} \)
53 \( 1 + 10.1T + 53T^{2} \)
59 \( 1 - 1.36iT - 59T^{2} \)
61 \( 1 - 5T + 61T^{2} \)
67 \( 1 + 4.14iT - 67T^{2} \)
71 \( 1 + 3.46iT - 71T^{2} \)
73 \( 1 - 11.3iT - 73T^{2} \)
79 \( 1 - 13.1T + 79T^{2} \)
83 \( 1 + 11.7iT - 83T^{2} \)
89 \( 1 + 6.92iT - 89T^{2} \)
97 \( 1 + 2.04iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.973985124439551345012596508736, −7.963497689850963959228959824218, −7.34377852197147506140876813142, −6.73426860761537748078573438499, −5.98350820134608723701914120711, −4.55269946029445993331481679727, −3.83893181876032245036795970551, −3.08669180363082842319754831374, −2.04898218860139627871384793502, −0.42646246076505322766501673379, 1.71665635861250592616945937889, 2.28241861769894587451993170951, 3.57261184775461526262800023584, 4.67160039215686509547828211080, 5.18326476424364760916908248049, 6.16857140018869386227928497037, 7.07212239913188829222512767924, 8.165576706206760604630601507491, 8.602987137998186593987112795019, 9.287244811273977984775908870030

Graph of the $Z$-function along the critical line